Definition
Construction of game agents though simulated evolution is the use of algorithms that model the biological of process of evolution to develop the behavior and/or morphology of game agents.
Introduction
Computer game worlds are often inhabited by numerous artificial agents, which may be helpful, neutral, or hostile toward the player or players. Common approaches for defining the behavior of such agents include rule-based scripts and finite state machines (Buckland 2005). However, agent behavior can also be generated automatically using evolutionary computation (EC; Eiben and Smith 2003). EC is a machine-learning technique that can be applied to sequential decision-making problems with large and partially observable state spaces, like video games.
EC can create individual agents or teams, and these agents can be opponents or companions of human...
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
References
Buckland, M.: Programming Game AI by Example. Jones and Bartlett Learning. Plano, Texas (2005)
Cardamone, L., Loiacono, D., Lanzi, P. L.: Evolving competitive car controllers for racing games with neuroevolution. In: Proceedings of the 11th Annual Conference on Genetic and Evolutionary Computation, (GECCO’09), pp. 1179–1186. ACM, New York (2009)
Darwin, C.: On the Origin of Species by Means of Natural Selection or the Preservation of Favored Races in the Struggle for Life. Murray, London (1859)
Eiben, A.E., Smith, J.E.: Introduction to Evolutionary Computing. Springer, Berlin (2003)
Fogel, D.B.: Blondie24: Playing at the Edge of AI. Morgan Kaufmann, San Francisco (2002)
Gemrot, J., Kadlec, R., Bida, M., Burkert, O., Pibil, R., Havlicek, J., Zemcak, L., Simlovic, J., Vansa, R., Stolba, M., Plch, T., Brom, C.: Pogamut 3 can assist developers in building AI (not only) for their videogame agents. Agents Games Simul. LNCS 5920, 1–15 (2009)
Grand, S., Cliff, D., Malhotra, A.: Creatures: Artificial life autonomous software agents for home entertainment. In: Proceedings of the 1st International Conference on Autonomous Agents, AGENTS’97, pp. 22–29. ACM, New York (1997)
Gruau, F., Whitley, D., Pyeatt, L.: A comparison between cellular encoding and direct encoding for genetic neural networks. In: Proceedings of the 1st Annual Conference on Genetic Programming, GP’96, 81–89. MIT Press, Cambridge, MA, USA (1996)
Hastings, E.J., Guha, R.K., Stanley, K.O.: Automatic content generation in the Galactic Arms Race video game. IEEE Trans. Comput. Intell. AI Games 1(4), 245–263 (2009)
Hausknecht, M., Khandelwal, P., Miikkulainen, R., Stone, P.: HyperNEAT-GGP: a HyperNEAT-based Atari General Game Player. In: Proceedings of the 14th Annual Conference on Genetic and Evolutionary Computation, GECCO’12, pp. 217–224. ACM, New York (2012)
Haykin, S.: Neural Networks, a Comprehensive Foundation. Prentice Hall, Upper Saddle River (1999)
Huizinga, J., Mouret, J.-B., Clune, J.: Evolving neural networks that are both modular and regular: HyperNEAT plus the connection cost technique. In: Proceedings of the 16th Annual Conference on Genetic and Evolutionary Computation, GECCO’14, pp. 697–704. ACM, New York (2014)
Isla, D.: Managing complexity in the Halo 2 AI system. In: Proceedings of the Game Developers Conference, GDC’05, San Francisco (2005)
Kadlec, R.: Evolution of Intelligent Agent Behaviour in Computer Games. Master’s thesis, Charles University in Prague, Czech Republic (2008)
Lessin, D., Fussell, D., Miikkulainen, R.: Adapting morphology to multiple tasks in evolved virtual creatures. In: Proceedings of the 14th International Conference on the Synthesis and Simulation of Living Systems, ALIFE’14. MIT Press, Cambridge, MA (2014)
Ponsen, M., Muñoz-avila, H., Spronck, P., Aha, D.W.: Automatically generating game tactics via evolutionary learning. AI Mag. 27(3), 75–84 (2006)
Schrum, J., Karpov, I.V., Miikkulainen, R.: Humanlike Combat Behavior via Multiobjective Neuroevolution, pp. 119–150. Springer, Berlin (2012)
Schrum, J., Miikkulainen, R.: Evolving multimodal behavior with modular neural networks in Ms. Pac-Man. In: Proceedings of the 16th Annual Conference on Genetic and Evolutionary Computation, GECCO’14, pp. 325–332. ACM, New York (2014)
Sims, K.: Evolving virtual creatures. In: Proceedings of the 21st Annual Conference on Computer Graphics and Interactive Techniques, SIG-GRAPH’94, pp. 15–22. ACM, New York (1994)
Stanley, K.O., Miikkulainen, R.: Evolving neural networks through augmenting topologies. Evol. Comput. 10(2), 99–127 (2002)
Stanley, K. O., Bryant, B. D., Miikkulainen, R.: Evolving neural network agents in the NERO video game. In: Proceedings of the IEEE Symposium on Computational Intelligence and Games, CIG’05. IEEE, Piscataway (2005)
Stanley, K.O., D’Ambrosio, D.B., Gauci, J.: A hypercube-based encoding for evolving large-scale neural networks. Artif. Life 15(2), 185–212 (2009)
Togelius, J., Karakovskiy, S., Koutnik, J., Schmidhuber, J.: Super Mario evolution. In: Proceedings of the IEEE Symposium on Computational Intelligence and Games, CIG’09, pp. 156–161. IEEE, Piscataway (2009)
Verbancsics, P., Stanley, K. O.: Transfer learning through indirect encoding. In: Proceedings of the 12th Annual Conference on Genetic and Evolutionary Computation, GECCO’10, pp. 547–554. ACM, New York (2010)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 Springer Nature Switzerland AG
About this entry
Cite this entry
Schrum, J., Miikkulainen, R. (2024). Constructing Game Agents Through Simulated Evolution. In: Lee, N. (eds) Encyclopedia of Computer Graphics and Games. Springer, Cham. https://doi.org/10.1007/978-3-031-23161-2_15
Download citation
DOI: https://doi.org/10.1007/978-3-031-23161-2_15
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-23159-9
Online ISBN: 978-3-031-23161-2
eBook Packages: Computer ScienceReference Module Computer Science and Engineering