[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Constructing Game Agents Through Simulated Evolution

  • Reference work entry
  • First Online:
Encyclopedia of Computer Graphics and Games

Synonyms

Evolutionary agent design; Evolutionary algorithms; Evolutionary computation; Evolutionary machine learning; Neuroevolution

Definition

Construction of game agents though simulated evolution is the use of algorithms that model the biological of process of evolution to develop the behavior and/or morphology of game agents.

Introduction

Computer game worlds are often inhabited by numerous artificial agents, which may be helpful, neutral, or hostile toward the player or players. Common approaches for defining the behavior of such agents include rule-based scripts and finite state machines (Buckland 2005). However, agent behavior can also be generated automatically using evolutionary computation (EC; Eiben and Smith 2003). EC is a machine-learning technique that can be applied to sequential decision-making problems with large and partially observable state spaces, like video games.

EC can create individual agents or teams, and these agents can be opponents or companions of human...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 799.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
GBP 799.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Buckland, M.: Programming Game AI by Example. Jones and Bartlett Learning. Plano, Texas (2005)

    Google Scholar 

  • Cardamone, L., Loiacono, D., Lanzi, P. L.: Evolving competitive car controllers for racing games with neuroevolution. In: Proceedings of the 11th Annual Conference on Genetic and Evolutionary Computation, (GECCO’09), pp. 1179–1186. ACM, New York (2009)

    Google Scholar 

  • Darwin, C.: On the Origin of Species by Means of Natural Selection or the Preservation of Favored Races in the Struggle for Life. Murray, London (1859)

    Google Scholar 

  • Eiben, A.E., Smith, J.E.: Introduction to Evolutionary Computing. Springer, Berlin (2003)

    Book  Google Scholar 

  • Fogel, D.B.: Blondie24: Playing at the Edge of AI. Morgan Kaufmann, San Francisco (2002)

    Book  Google Scholar 

  • Gemrot, J., Kadlec, R., Bida, M., Burkert, O., Pibil, R., Havlicek, J., Zemcak, L., Simlovic, J., Vansa, R., Stolba, M., Plch, T., Brom, C.: Pogamut 3 can assist developers in building AI (not only) for their videogame agents. Agents Games Simul. LNCS 5920, 1–15 (2009)

    Article  Google Scholar 

  • Grand, S., Cliff, D., Malhotra, A.: Creatures: Artificial life autonomous software agents for home entertainment. In: Proceedings of the 1st International Conference on Autonomous Agents, AGENTS’97, pp. 22–29. ACM, New York (1997)

    Google Scholar 

  • Gruau, F., Whitley, D., Pyeatt, L.: A comparison between cellular encoding and direct encoding for genetic neural networks. In: Proceedings of the 1st Annual Conference on Genetic Programming, GP’96, 81–89. MIT Press, Cambridge, MA, USA (1996)

    Google Scholar 

  • Hastings, E.J., Guha, R.K., Stanley, K.O.: Automatic content generation in the Galactic Arms Race video game. IEEE Trans. Comput. Intell. AI Games 1(4), 245–263 (2009)

    Article  Google Scholar 

  • Hausknecht, M., Khandelwal, P., Miikkulainen, R., Stone, P.: HyperNEAT-GGP: a HyperNEAT-based Atari General Game Player. In: Proceedings of the 14th Annual Conference on Genetic and Evolutionary Computation, GECCO’12, pp. 217–224. ACM, New York (2012)

    Google Scholar 

  • Haykin, S.: Neural Networks, a Comprehensive Foundation. Prentice Hall, Upper Saddle River (1999)

    Google Scholar 

  • Huizinga, J., Mouret, J.-B., Clune, J.: Evolving neural networks that are both modular and regular: HyperNEAT plus the connection cost technique. In: Proceedings of the 16th Annual Conference on Genetic and Evolutionary Computation, GECCO’14, pp. 697–704. ACM, New York (2014)

    Google Scholar 

  • Isla, D.: Managing complexity in the Halo 2 AI system. In: Proceedings of the Game Developers Conference, GDC’05, San Francisco (2005)

    Google Scholar 

  • Kadlec, R.: Evolution of Intelligent Agent Behaviour in Computer Games. Master’s thesis, Charles University in Prague, Czech Republic (2008)

    Google Scholar 

  • Lessin, D., Fussell, D., Miikkulainen, R.: Adapting morphology to multiple tasks in evolved virtual creatures. In: Proceedings of the 14th International Conference on the Synthesis and Simulation of Living Systems, ALIFE’14. MIT Press, Cambridge, MA (2014)

    Google Scholar 

  • Ponsen, M., Muñoz-avila, H., Spronck, P., Aha, D.W.: Automatically generating game tactics via evolutionary learning. AI Mag. 27(3), 75–84 (2006)

    Google Scholar 

  • Schrum, J., Karpov, I.V., Miikkulainen, R.: Humanlike Combat Behavior via Multiobjective Neuroevolution, pp. 119–150. Springer, Berlin (2012)

    Google Scholar 

  • Schrum, J., Miikkulainen, R.: Evolving multimodal behavior with modular neural networks in Ms. Pac-Man. In: Proceedings of the 16th Annual Conference on Genetic and Evolutionary Computation, GECCO’14, pp. 325–332. ACM, New York (2014)

    Google Scholar 

  • Sims, K.: Evolving virtual creatures. In: Proceedings of the 21st Annual Conference on Computer Graphics and Interactive Techniques, SIG-GRAPH’94, pp. 15–22. ACM, New York (1994)

    Google Scholar 

  • Stanley, K.O., Miikkulainen, R.: Evolving neural networks through augmenting topologies. Evol. Comput. 10(2), 99–127 (2002)

    Article  Google Scholar 

  • Stanley, K. O., Bryant, B. D., Miikkulainen, R.: Evolving neural network agents in the NERO video game. In: Proceedings of the IEEE Symposium on Computational Intelligence and Games, CIG’05. IEEE, Piscataway (2005)

    Google Scholar 

  • Stanley, K.O., D’Ambrosio, D.B., Gauci, J.: A hypercube-based encoding for evolving large-scale neural networks. Artif. Life 15(2), 185–212 (2009)

    Article  Google Scholar 

  • Togelius, J., Karakovskiy, S., Koutnik, J., Schmidhuber, J.: Super Mario evolution. In: Proceedings of the IEEE Symposium on Computational Intelligence and Games, CIG’09, pp. 156–161. IEEE, Piscataway (2009)

    Google Scholar 

  • Verbancsics, P., Stanley, K. O.: Transfer learning through indirect encoding. In: Proceedings of the 12th Annual Conference on Genetic and Evolutionary Computation, GECCO’10, pp. 547–554. ACM, New York (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacob Schrum .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Schrum, J., Miikkulainen, R. (2024). Constructing Game Agents Through Simulated Evolution. In: Lee, N. (eds) Encyclopedia of Computer Graphics and Games. Springer, Cham. https://doi.org/10.1007/978-3-031-23161-2_15

Download citation

Publish with us

Policies and ethics