[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Comparative Evaluation on Sentiment Analysis Algorithms

  • Conference paper
  • First Online:
Innovations and Interdisciplinary Solutions for Underserved Areas (InterSol 2022)

Abstract

Classifying texts based on sentiments present in the text is called Sentiment Analysis. There are many Sentiment Analysis Techniques available. In this paper, we have addressed the problem of sentiment analysis and compared many different machine learning and deep learning algorithms to perform sentiment analysis based on their accuracy. We extracted useful features to feed them in our classifier to generate results. Also, we have used the majority vote ensemble method to achieve more accurate results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 55.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 69.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://help.sentiment140.com.

  2. 2.

    https://www.nltk.org/api/nltk.corpus.html.

  3. 3.

    https://www.nltk.org/api/nltk.stem.html.

  4. 4.

    https://www.nltk.org/api/nltk.sentiment.html.

  5. 5.

    https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html.

References

  1. Vinodhini, G., Chandrasekaran, D.: Sentiment analysis and opinion mining: a survey. Int. J. Adv. Res. Comput. Sci. Softw. Eng. 2(6), 282–292 (2012)

    Google Scholar 

  2. Ain, Q.T., Riaz, A., Noureen, A., Kamran, M., Hayat, B., Rehman, A.: Sentiment analysis using deep learning techniques: a review. Int. J. Adv. Comput. Sci. Appl. 8(6), 424–433 (2017)

    Google Scholar 

  3. Feldman, R.: Techniques and applications for sentiment analysis. Commun. ACM 56(4), 82–89 (2013)

    Article  Google Scholar 

  4. Beigi, G., Hu, X., Maciejewski, R., Liu, H.: An overview of sentiment analysis in social media and its applications in disaster relief. In. Pedrycz, W., Chen, S.M. (eds.) Sentiment Analysis and Ontology Engineering. Studies in Computational Intelligence, vol. 629, pp. 313–340 (2016)

    Google Scholar 

  5. Dolianiti, F.S., Iakovakis, D., Dias, S.B., Hadjileontiadou, S., Diniz, J.A., Hadjileontiadis, L.: Sentiment analysis techniques and applications in education: a survey. In: Tsitouridou, M., Diniz, J. A., Mikropoulos T. (eds.) Technology and Innovation in Learning, Teaching and Education. TECH-EDU 2018. Communications in Computer and Information Science, vol. 993, pp. 412–427 (2019)

    Google Scholar 

  6. Das, S., Behera, R.K., Kumar, M., Rath, S.K.: Real-time sentiment analysis of Twitter streaming data for stock prediction. Procedia Comput. Sci. 132, 956–964 (2018)

    Article  Google Scholar 

  7. Manning, C., Surdeanu, M., Bauer, J., Finkel, J., Bethard, S., McClosky, D.: The Stanford CoreNLP natural language processing toolkit. In: Proceedings of 52nd Annual Meeting of the Association for Computational Linguistics: System Demonstrations, pp. 55–60 (2014).

    Google Scholar 

  8. Kawade, D.: Sentiment analysis: machine learning approach. Int. J. Eng. Technol. 09, 2183–2186 (2017)

    Article  Google Scholar 

  9. Wang, J. H., Liu, T.W., Luo, X., Wang, L.: An LSTM approach to short text sentiment classification with word embeddings. In: Proceedings of the 30th Conference on Computational Linguistics and Speech Processing (ROCLING 2018), pp. 214–223 (2018)

    Google Scholar 

  10. Jongeling, R., Datta, S., Serebrenik, A.: Choosing your weapons: on sentiment analysis tools for software engineering research. In: proceeding of IEEE International Conference on Software Maintenance and Evolution (ICSME), pp. 531–535 (2015).

    Google Scholar 

  11. Ramakrishnan, U., Shankar, R., Krishna, G.: Sentiment analysis of Twitter data: based on user-behaviour. Int. J. Appl. Eng. Res. 10(7), 16291–16301 (2015)

    Google Scholar 

  12. Varsha, S., Vijaya, S., Apashabi, P.: Sentiment analysis on Twitter data. Int. J. Innov. Res. Adv. Eng. 1(2), 2349–2163 (2015)

    Google Scholar 

  13. Pletea, D., Vasilescu, B., Serebrenik, A.: Security and emotion: sentiment analysis of security discussions on Github. In: Proceedings of the 11th Working Conference on Mining Software Repositories, pp. 348–351 (2014)

    Google Scholar 

  14. Rahman, M.A., Seddiqui, M.H.: Comparison of classical machine learning approaches on bangla textual emotion analysis. https://arxiv.org/abs/1907.07826 (2019)

  15. Goyal, M., Gupta, N., Jain, A., Kumari, D.: Smart government e-services for Indian railways using Twitter. In: Sharma, D.K., Balas, V.E., Son, L.H., Sharma, R., Cengiz, K. (eds.) Micro-Electronics and Telecommunication Engineering, pp. 721–731 (2020)

    Google Scholar 

  16. Santos, C.D., Gatti, M.: Deep convolutional neural networks for sentiment analysis of short texts. In: Proceeding of 25th International Conference on Computational Linguistics, pp. 69–78 (2014)

    Google Scholar 

  17. Zhang, L., Wang, S., Liu, B.: Deep learning for sentiment analysis: a survey. WIREs Data Min. Knowl. Discov. 8(4), e1253 (2018)

    Google Scholar 

  18. Kim, Y.: Convolutional neural networks for sentence classification. In: Proceedings of the International Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 1746–1751 (2014)

    Google Scholar 

  19. Tang, D., Qin, B., Liu, T.: Document modeling with gated recurrent neural network for sentiment classification. In: Proceedings of the International Conference on Empirical Methods in Natural Language Processing, pp. 1422–1432 (2015)

    Google Scholar 

  20. Tholusuri, A., Anumala, M., Malapolu, B., Lakshmi, J.: Sentiment analysis using LSTM. Int. J. Eng. Adv. Technol. (IJEAT) 8(6S3), 2249–8958 (2019)

    Google Scholar 

  21. Kurniasari, L., Setyanto, A.: Sentiment analysis using recurrent neural network. In: Journal of Physics: Conference Series, vol. 1471, p. 012018 (2020)

    Google Scholar 

  22. Wang, X., Jiang, W., Luo, Z.: Combination of convolutional and recurrent neural network for sentiment analysis of short texts. In: Proceedings of 26th International Conference on Computational Linguistics, pp. 2428–2437 (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aman Kumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kumar, A., Khare, M., Tiwari, S. (2022). Comparative Evaluation on Sentiment Analysis Algorithms. In: Mambo, A.D., Gueye, A., Bassioni, G. (eds) Innovations and Interdisciplinary Solutions for Underserved Areas. InterSol 2022. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 449. Springer, Cham. https://doi.org/10.1007/978-3-031-23116-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-23116-2_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-23115-5

  • Online ISBN: 978-3-031-23116-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics