Abstract
In this paper, we construct two families of linear codes over the ring \({\mathbb F}_{q}+u{\mathbb F}_{q}\) by the defining set approach, where q is a prime power and \(u^2=0\). We completely determine their Lee weight distributions, which shows that these codes have few Lee weights. Via the Gray map, we obtain a family of near Griesmer codes over \({\mathbb F}_{q}\), which is also distance-optimal, and a family of linear codes over \({\mathbb F}_{q}\), whose optimality is characterized with an explicit computable criterion using the Griesmer bound.
This work was supported by the Knowledge Innovation Program of Wuhan-Basic Research under Grant 2022010801010319, the Natural Science Foundation of Hubei Province of China under Grant 2021CFA079 and the National Natural Science Foundation of China under Grant 62072162. National Natural Science Foundation of China under Grant 12001176.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Anderson, R.J., Ding, C., Hellsesth, T., Kløve, T.: How to build robust shared control systems. Des. Codes Cryptogr. 15(2), 111–123 (1998)
Calderbank, A.R., Goethals, J.: Three-weight codes and association schemes. Philips J. Res. 39(4–5), 143–152 (1984)
Carlet, C., Ding, C., Yuan, J.: Linear codes from perfect nonlinear mappings and their secret sharing schemes. IEEE Trans. Inf. Theory 51(6), 2089–2102 (2005)
Chang, S., Hyun, J.Y.: Linear codes from simplicial complexes. Des. Codes Cryptogr. 86, 2167–2181 (2018)
Ding, C., Helleseth, T., Kløve, T., Wang, X.: A generic construction of cartesian authentication codes. IEEE Trans. Inf. Theory 53(6), 2229–2235 (2007)
Ding, C., Niederreiter, H.: Cyclotomic linear codes of order \(3\). IEEE Trans. Inf. Theory 53(6), 2274–2277 (2007)
Ding, C., Wang, X.: A coding theory construction of new systematic authentication codes. Theor. Comput. Sci. 330(1), 81–99 (2005)
Grassl M.: Bounds on the minimum distance of linear codes. Online available at http://www.codetables.de, Accessed on 2022-07-13
Griesmer, J.H.: A bound for error correcting codes. IBM J. Res. Dev. 4, 532–542 (1960)
Huffman W., Pless V.: Fundamentals of error-correcting codes. Cambridge University Press (1997)
Hyun, J.Y., Lee, J., Lee, Y.: Infinite families of optimal linear codes constructed from simplicial complexes. IEEE Trans. Inf. Theory 66(11), 6762–6773 (2020)
Liu, H., Maouche, Y.: Two or few-weight trace codes over \({\mathbb{F} _{q}}+u{\mathbb{F} _{q}}\). IEEE Trans. Inf. Theory 65(5), 2696–2703 (2019)
Shi, M., Guan, Y., Solé, P.: Two new families of two-weight codes. IEEE Trans. Inf. Theory 63(10), 6240–6246 (2017)
Shi, M., Liu, Y., Solé, P.: Optimal two-weight codes from trace codes over \(\mathbb{F} _2+u\mathbb{F} _2\). IEEE Commun. Lett. 20(12), 2346–2349 (2016)
Shi M., Wu R., Liu Y., Solé P.: Two and three weight codes over \({\mathbb{F}}_{p}+u{\mathbb{F}}_{p}\). Cryptogr. Commun. 9, 637–646 (2017)
Solomon, G., Stiffler, J.J.: Algebraically punctured cyclic codes. Inform. and Control 8, 170–179 (1965)
Wu, Y., Zhu, X., Yue, Q.: Optimal few-weight codes from simplicial complexes. IEEE Trans. Inf. Theory 66(6), 3657–3663 (2020)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Hu, Z., Chen, B., Li, N., Zeng, X. (2023). Two Classes of Optimal Few-Weight Codes Over \({\mathbb F}_{q}+u{\mathbb F}_{q}\). In: Mesnager, S., Zhou, Z. (eds) Arithmetic of Finite Fields. WAIFI 2022. Lecture Notes in Computer Science, vol 13638. Springer, Cham. https://doi.org/10.1007/978-3-031-22944-2_13
Download citation
DOI: https://doi.org/10.1007/978-3-031-22944-2_13
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-22943-5
Online ISBN: 978-3-031-22944-2
eBook Packages: Computer ScienceComputer Science (R0)