[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Two Classes of Optimal Few-Weight Codes Over \({\mathbb F}_{q}+u{\mathbb F}_{q}\)

  • Conference paper
  • First Online:
Arithmetic of Finite Fields (WAIFI 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13638))

Included in the following conference series:

  • 599 Accesses

Abstract

In this paper, we construct two families of linear codes over the ring \({\mathbb F}_{q}+u{\mathbb F}_{q}\) by the defining set approach, where q is a prime power and \(u^2=0\). We completely determine their Lee weight distributions, which shows that these codes have few Lee weights. Via the Gray map, we obtain a family of near Griesmer codes over \({\mathbb F}_{q}\), which is also distance-optimal, and a family of linear codes over \({\mathbb F}_{q}\), whose optimality is characterized with an explicit computable criterion using the Griesmer bound.

This work was supported by the Knowledge Innovation Program of Wuhan-Basic Research under Grant 2022010801010319, the Natural Science Foundation of Hubei Province of China under Grant 2021CFA079 and the National Natural Science Foundation of China under Grant 62072162. National Natural Science Foundation of China under Grant 12001176.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 51.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 64.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Anderson, R.J., Ding, C., Hellsesth, T., Kløve, T.: How to build robust shared control systems. Des. Codes Cryptogr. 15(2), 111–123 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  2. Calderbank, A.R., Goethals, J.: Three-weight codes and association schemes. Philips J. Res. 39(4–5), 143–152 (1984)

    MathSciNet  MATH  Google Scholar 

  3. Carlet, C., Ding, C., Yuan, J.: Linear codes from perfect nonlinear mappings and their secret sharing schemes. IEEE Trans. Inf. Theory 51(6), 2089–2102 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  4. Chang, S., Hyun, J.Y.: Linear codes from simplicial complexes. Des. Codes Cryptogr. 86, 2167–2181 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  5. Ding, C., Helleseth, T., Kløve, T., Wang, X.: A generic construction of cartesian authentication codes. IEEE Trans. Inf. Theory 53(6), 2229–2235 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  6. Ding, C., Niederreiter, H.: Cyclotomic linear codes of order \(3\). IEEE Trans. Inf. Theory 53(6), 2274–2277 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  7. Ding, C., Wang, X.: A coding theory construction of new systematic authentication codes. Theor. Comput. Sci. 330(1), 81–99 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  8. Grassl M.: Bounds on the minimum distance of linear codes. Online available at http://www.codetables.de, Accessed on 2022-07-13

  9. Griesmer, J.H.: A bound for error correcting codes. IBM J. Res. Dev. 4, 532–542 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  10. Huffman W., Pless V.: Fundamentals of error-correcting codes. Cambridge University Press (1997)

    Google Scholar 

  11. Hyun, J.Y., Lee, J., Lee, Y.: Infinite families of optimal linear codes constructed from simplicial complexes. IEEE Trans. Inf. Theory 66(11), 6762–6773 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  12. Liu, H., Maouche, Y.: Two or few-weight trace codes over \({\mathbb{F} _{q}}+u{\mathbb{F} _{q}}\). IEEE Trans. Inf. Theory 65(5), 2696–2703 (2019)

    Article  MATH  Google Scholar 

  13. Shi, M., Guan, Y., Solé, P.: Two new families of two-weight codes. IEEE Trans. Inf. Theory 63(10), 6240–6246 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  14. Shi, M., Liu, Y., Solé, P.: Optimal two-weight codes from trace codes over \(\mathbb{F} _2+u\mathbb{F} _2\). IEEE Commun. Lett. 20(12), 2346–2349 (2016)

    Article  Google Scholar 

  15. Shi M., Wu R., Liu Y., Solé P.: Two and three weight codes over \({\mathbb{F}}_{p}+u{\mathbb{F}}_{p}\). Cryptogr. Commun. 9, 637–646 (2017)

    Google Scholar 

  16. Solomon, G., Stiffler, J.J.: Algebraically punctured cyclic codes. Inform. and Control 8, 170–179 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  17. Wu, Y., Zhu, X., Yue, Q.: Optimal few-weight codes from simplicial complexes. IEEE Trans. Inf. Theory 66(6), 3657–3663 (2020)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nian Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hu, Z., Chen, B., Li, N., Zeng, X. (2023). Two Classes of Optimal Few-Weight Codes Over \({\mathbb F}_{q}+u{\mathbb F}_{q}\). In: Mesnager, S., Zhou, Z. (eds) Arithmetic of Finite Fields. WAIFI 2022. Lecture Notes in Computer Science, vol 13638. Springer, Cham. https://doi.org/10.1007/978-3-031-22944-2_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-22944-2_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-22943-5

  • Online ISBN: 978-3-031-22944-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics