[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Automated Fish Classification Using Unprocessed Fatty Acid Chromatographic Data: A Machine Learning Approach

  • Conference paper
  • First Online:
AI 2022: Advances in Artificial Intelligence (AI 2022)

Abstract

Fish is approximately 40% edible fillet. The remaining 60% can be processed into low-value fertilizer or high-value pharmaceutical-grade omega-3 concentrates. High-value manufacturing options depend on the composition of the biomass, which varies with fish species, fish tissue and seasonally throughout the year. Fatty acid composition, measured by Gas Chromatography, is an important measure of marine biomass quality. This technique is accurate and precise, but processing and interpreting the results is time-consuming and requires domain-specific expertise. The paper investigates different classification and feature selection algorithms for their ability to automate the processing of Gas Chromatography data. Experiments found that SVM could classify compositionally diverse marine biomass based on raw chromatographic fatty acid data. The SVM model is interpretable through visualization which can highlight important features for classification. Experiments demonstrated that applying feature selection significantly reduced dimensionality and improved classification performance on high-dimensional low sample-size datasets. According to the reduction rate, feature selection could accelerate the classification system up to four times.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 79.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 99.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Alsahaf, A., Petkov, N., Shenoy, V., Azzopardi, G.: A framework for feature selection through boosting. Exp. Syst. Appl. 187, 115895 (2022)

    Article  Google Scholar 

  2. Alweshah, M., Alkhalaileh, S., Al-Betar, M.A., Bakar, A.A.: Coronavirus herd immunity optimizer with greedy crossover for feature selection in medical diagnosis. Knowl. Based Syst. 235, 107629 (2022)

    Article  Google Scholar 

  3. Bi, K., Zhang, D., Qiu, T., Huang, Y.: GC-MS fingerprints profiling using machine learning models for food flavor prediction. Processes 8(1), 23 (2020)

    Article  Google Scholar 

  4. Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20(3), 273–297 (1995)

    Article  MATH  Google Scholar 

  5. Ding, C., Peng, H.: Minimum redundancy feature selection from microarray gene expression data. J. Bioinform. Comput. Biol. 3(02), 185–205 (2005)

    Article  Google Scholar 

  6. Eder, K.: Gas chromatographic analysis of fatty acid methyl esters. J. Chromatogr. B Biomed. Sci. Appl. 671(1–2), 113–131 (1995)

    Article  Google Scholar 

  7. Fix, E., Hodges, J.L.: Discriminatory analysis. Nonparametric discrimination: consistency properties. Int. Stat. Rev./Revue Internationale de Statistique 57(3), 238–247 (1989)

    MATH  Google Scholar 

  8. Hand, D.J., Yu, K.: Idiot’s bayes-not so stupid after all? Int. Stat. Rev. 69(3), 385–398 (2001)

    MATH  Google Scholar 

  9. Ho, T.K.: Random decision forests. In: Proceedings of 3rd International Conference on Document Analysis and Recognition, vol. 1, pp. 278–282. IEEE (1995)

    Google Scholar 

  10. Kennedy, J., Eberhart, R.C.: Particle swarm optimization. In: Proceedings of the International Conference on Neural Networks, ICNN 1995, vol. 4, pp. 1942–1948. IEEE (1995)

    Google Scholar 

  11. Li, J., et al.: Feature selection: a data perspective. ACM Comput. Surv. (CSUR) 50(6), 1–45 (2017)

    Article  Google Scholar 

  12. Liu, H., Setiono, R.: Chi2: feature selection and discretization of numeric attributes. In: Proceedings of 7th IEEE International Conference on Tools with Artificial Intelligence, pp. 388–391. IEEE (1995)

    Google Scholar 

  13. Loh, W.Y.: Classification and regression trees. Wiley Interdisc. Rev. Data Min. Knowl. Discov. 1(1), 14–23 (2011)

    Google Scholar 

  14. Matyushin, D.D., Buryak, A.K.: Gas chromatographic retention index prediction using multimodal machine learning. IEEE Access 8, 223140–223155 (2020)

    Article  Google Scholar 

  15. Nguyen, B.H., Xue, B., Zhang, M.: A survey on swarm intelligence approaches to feature selection in data mining. Swarm Evol. Comput. 54, 100663 (2020)

    Article  Google Scholar 

  16. Nguyen, H.B., Xue, B., Andreae, P., Zhang, M.: Particle swarm optimisation with genetic operators for feature selection. In: 2017 IEEE Congress on Evolutionary Computation (CEC), pp. 286–293 (2017). https://doi.org/10.1109/CEC.2017.7969325

  17. Panse, M.L., Phalke, S.D.: World market of omega-3 fatty acids. Omega-3 Fatty Acids, pp. 79–88 (2016)

    Google Scholar 

  18. Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

    MATH  Google Scholar 

  19. Restek: High-resolution GC analyses of fatty acid methyl esters (FAMEs)

    Google Scholar 

  20. Robnik-Šikonja, M., Kononenko, I.: Theoretical and empirical analysis of ReliefF and RReliefF. Mach. Learn. 53(1), 23–69 (2003)

    Article  MATH  Google Scholar 

  21. Simopoulos, A.P.: Evolutionary aspects of diet: the omega-6/omega-3 ratio and the brain. Mol. Neurobiol. 44(2), 203–215 (2011)

    Article  Google Scholar 

  22. Tomasi, G., Van Den Berg, F., Andersson, C.: Correlation optimized warping and dynamic time warping as preprocessing methods for chromatographic data. J. Chemom. A J. Chemometr. Soc. 18(5), 231–241 (2004)

    Google Scholar 

  23. Tran, C.T., Zhang, M., Andreae, P.: Multiple imputation for missing data using genetic programming. In: The Annual Conference on Genetic and Evolutionary Computation, pp. 583–590 (2015)

    Google Scholar 

  24. Zhang, D., Huang, X., Regnier, F.E., Zhang, M.: Two-dimensional correlation optimized warping algorithm for aligning GC\(\times \)GC-MS data. Anal. Chem. 80(8), 2664–2671 (2008)

    Article  Google Scholar 

  25. Zhang, Y., Gong, D.w., Gao, X.z., Tian, T., Sun, X.y.: Binary differential evolution with self-learning for multi-objective feature selection. Inf. Sci. 507, 67–85 (2020)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jesse Wood or Bach Hoai Nguyen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wood, J., Nguyen, B.H., Xue, B., Zhang, M., Killeen, D. (2022). Automated Fish Classification Using Unprocessed Fatty Acid Chromatographic Data: A Machine Learning Approach. In: Aziz, H., Corrêa, D., French, T. (eds) AI 2022: Advances in Artificial Intelligence. AI 2022. Lecture Notes in Computer Science(), vol 13728. Springer, Cham. https://doi.org/10.1007/978-3-031-22695-3_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-22695-3_36

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-22694-6

  • Online ISBN: 978-3-031-22695-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics