[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Fairness Aware Swarm-based Machine Learning for Data Streams

  • Conference paper
  • First Online:
AI 2022: Advances in Artificial Intelligence (AI 2022)

Abstract

Machine learning has been widely applied to extract insights from streaming data. However, ethical issues such as fairness have emerged related to these decision-support systems. Feature engineering methods have shown potential in representing and learning of fairness learning. However, these techniques have not been applied to streaming data. In this paper, we proposed a fairness-aware swarm-based machine learning for streaming data. The novelty of this algorithm is in the utilisation of two swarms, one for classification by building a network of prototypes and one for discrimination mitigating using feature weighting. Experiments with well-known datasets in fairness learning show that the proposed methods can improve fairness while maintaining the classification performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 79.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 99.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Aghaei, S., Azizi, M.J., Vayanos, P.: Learning optimal and fair decision trees for non-discriminative decision-making. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 1418–1426 (2019)

    Google Scholar 

  2. Ara, A., Ara, A.: Case study: integrating IoT, streaming analytics and machine learning to improve intelligent diabetes management system. In: 2017 International Conference on Energy, Communication, Data Analytics and Soft Computing, pp. 3179–3182. IEEE (2018)

    Google Scholar 

  3. Asudeh, A., Jagadish, H.V., Stoyanovich, J., Das, G.: Designing fair ranking schemes. In: Proceedings of the 2019 International Conference on Management of Data, pp. 1259–1276. New York, NY, USA (2019)

    Google Scholar 

  4. Belitz, C., Jiang, L., Bosch, N.: Automating procedurally fair feature selection in machine learning. In: Proceedings of the 2021 AAAI/ACM Conference on AI, Ethics, and Society, pp. 379–389 (2021)

    Google Scholar 

  5. Celis, E., Mehrotra, A., Vishnoi, N.: Toward controlling discrimination in online ad auctions. In: International Conference on Machine Learning, pp. 4456–4465 (2019)

    Google Scholar 

  6. Galhotra, S., Shanmugam, K., Sattigeri, P., Varshney, K.R.: Causal feature selection for algorithmic fairness. In: Proceedings of the 2022 International Conference on Management of Data, pp. 276–285 (2022)

    Google Scholar 

  7. Garg, P., Villasenor, J., Foggo, V.: Fairness metrics: a comparative analysis. In: 2020 IEEE International Conference on Big Data (Big Data), pp. 3662–3666 (2020)

    Google Scholar 

  8. Gomes, H.M., et al.: Adaptive random forests for evolving data stream classification. Mach. Learn. 106(9), 1469–1495 (2017)

    Google Scholar 

  9. Gomes, H.M., Read, J., Bifet, A., Barddal, J.P., Gama, J.: Machine learning for streaming data: state of the art, challenges, and opportunities. ACM SIGKDD Explor. Newslet. 21(2), 6–22 (2019)

    Google Scholar 

  10. Hulten, G., Spencer, L., Domingos, P.: Mining time-changing data streams. In: Proceedings of the Seventh ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 97–106 (2001)

    Google Scholar 

  11. Iosifidis, V., Tran, T.N.H., Ntoutsi, E.: Fairness-enhancing interventions in stream classification. In: International Conference on Database and Expert Systems Applications, pp. 261–276 (2019)

    Google Scholar 

  12. Kamiran, F., Calders, T.: Classifying without discriminating. In: 2009 2nd International Conference on Computer, Control and Communication, pp. 1–6 (2009)

    Google Scholar 

  13. Kamiran, F., Calders, T., Pechenizkiy, M.: Discrimination aware decision tree learning. In: 2010 IEEE International Conference on Data Mining, pp. 869–874 (2010)

    Google Scholar 

  14. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of International Conference on Neural Networks (ICNN), vol. 4, pp. 1942–1948 (1995)

    Google Scholar 

  15. Krawczyk, B.: Learning from imbalanced data: open challenges and future directions. Progress Artif. Intell. 5(4), 221–232 (2016). https://doi.org/10.1007/s13748-016-0094-0

    Article  Google Scholar 

  16. Krawczyk, B., Minku, L.L., Gama, J., Stefanowski, J., Woźniak, M.: Ensemble learning for data stream analysis: a survey. Inform. Fus. 37, 132–156 (2017)

    Article  Google Scholar 

  17. Krempl, G., et al.: Open challenges for data stream mining research. ACM SIGKDD Explor. Newslet. 16(1), 1–10 (2014)

    Google Scholar 

  18. Le Quy, T., Roy, A., Iosifidis, V., Zhang, W., Ntoutsi, E.: A survey on datasets for fairness-aware machine learning. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, p. e1452 (2022)

    Google Scholar 

  19. Losing, V., Hammer, B., Wersing, H.: KNN classifier with self adjusting memory for heterogeneous concept drift. In: 2016 IEEE 16th International Conference on Data Mining (ICDM), pp. 291–300 (2017)

    Google Scholar 

  20. Mavrovouniotis, M., Li, C., Yang, S.: A survey of swarm intelligence for dynamic optimization: algorithms and applications. Swarm Evolution. Comput. 33, 1–17 (2017)

    Article  Google Scholar 

  21. Mehrabi, N., Morstatter, F., Saxena, N., Lerman, K., Galstyan, A.: A survey on bias and fairness in machine learning. ACM Comput. Surv. 54(6), 1–35 (2021)

    Article  Google Scholar 

  22. Mohamed, M., Arkady, Z., Shonali, K.: Data stream mining. In: Oded, M., Lior, R. (eds.) Data Mining and Knowledge Discovery Handbook, p. 761. Springer, New York (2010). https://doi.org/10.1007/b107408

  23. Mulinka, P., Casas, P., Vanerio, J.: Continuous and adaptive learning over big streaming data for network security. In: 2019 IEEE 8th International Conference on Cloud Networking, pp. 1–4 (2019)

    Google Scholar 

  24. Nguyen, S., Tran, B., Alahakoon, D.: Dynamic self-organising swarm for unsupervised prototype generation. In: 2020 IEEE Congress on Evolutionary Computation, pp. 1–8 (2020)

    Google Scholar 

  25. Niño-Adan, I., Manjarres, D., Landa-Torres, I., Portillo, E.: Feature weighting methods: a review. Expert Syst. Appl. 184, 115424 (2021)

    Article  Google Scholar 

  26. Peška, L., Tashu, T.M., Horváth, T.: Swarm intelligence techniques in recommender systems-a review of recent research. Swarm Evolution. Comput. 48, 201–219 (2019)

    Article  Google Scholar 

  27. Salazar, R., Neutatz, F., Abedjan, Z.: Automated feature engineering for algorithmic fairness. Proc. VLDB Endowment 14(9), 1694–1702 (2021)

    Article  Google Scholar 

  28. Tran, B., Zhang, M., Xue, B.: A PSO based hybrid feature selection algorithm for high-dimensional classification. In: 2016 IEEE Congress on Evolutionary Computation, pp. 3801–3808 (2016)

    Google Scholar 

  29. Wang, H., Fan, W., Yu, P.S., Han, J.: Mining concept-drifting data streams using ensemble classifiers. In: Proceedings of the ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 226–235 (2003)

    Google Scholar 

  30. Zafar, M.B., Valera, I., Rogriguez, M.G., Gummadi, K.P.: Fairness constraints: mechanisms for fair classification. In: Artificial Intelligence and Statistics, pp. 962–970 (2017)

    Google Scholar 

  31. Zhang, W., Bifet, A.: Feat: a fairness-enhancing and concept-adapting decision tree classifier. In: International Conference on Discovery Science, pp. 175–189 (2020)

    Google Scholar 

  32. Zhang, W., Zhang, M., Zhang, J., Liu, Z., Chen, Z., Wang, J., Raff, E., Messina, E.: Flexible and adaptive fairness-aware learning in non-stationary data streams. In: 2020 IEEE 32nd International Conference on Tools with Artificial Intelligence (ICTAI), pp. 399–406 (2020)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diem Pham .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pham, D., Tran, B., Nguyen, S., Alahakoon, D. (2022). Fairness Aware Swarm-based Machine Learning for Data Streams. In: Aziz, H., Corrêa, D., French, T. (eds) AI 2022: Advances in Artificial Intelligence. AI 2022. Lecture Notes in Computer Science(), vol 13728. Springer, Cham. https://doi.org/10.1007/978-3-031-22695-3_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-22695-3_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-22694-6

  • Online ISBN: 978-3-031-22695-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics