[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Leakage-resilient Linear Secret-sharing Against Arbitrary Bounded-size Leakage Family

  • Conference paper
  • First Online:
Theory of Cryptography (TCC 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13747))

Included in the following conference series:

Abstract

Motivated by leakage-resilient secure computation of circuits with addition and multiplication gates, this work studies the leakage-resilience of linear secret-sharing schemes with a small reconstruction threshold against any bounded-size family of joint leakage attacks, i.e., the leakage function can leak global information from all secret shares.

We first prove that, with high probability, the Massey secret-sharing scheme corresponding to a random linear code over a finite field F is leakage-resilient against any \(\ell \)-bit joint leakage family of size at most \(|{F}|^{k-2.01}/8^\ell \), where k is the reconstruction threshold. Our result (1) bypasses the bottleneck due to the existing Fourier-analytic approach, (2) enables secure multiplication of secrets, and (3) is near-optimal. We use combinatorial and second-moment techniques to prove the result.

Next, we show that the Shamir secret-sharing scheme over a prime-order field F with randomly chosen evaluation places and with threshold k is leakage-resilient to any \(\ell \)-bit joint leakage family of size at most \(|{F}|^{2k-n-2.01}/(k!\cdot 8^\ell )\) with high probability. We prove this result by marrying our proof techniques for the first result with the existing Fourier analytical approach. Moreover, it is unlikely that one can extend this result beyond \(k/n\leqslant 0.5\) due to the technical hurdle for the Fourier-analytic approach.

Hemanta K. Maji, Hai H. Nguyen, Mingyuan Wang, Xiuyu Ye, and Albert Yu are supported in part by an NSF CRII Award CNS–1566499, NSF SMALL Awards CNS–1618822 and CNS–2055605, the IARPA HECTOR project, MITRE Innovation Program Academic Cybersecurity Research Awards (2019–2020, 2020–2021), a Ross-Lynn Research Scholars Grant (2021–2022), a Purdue Research Foundation (PRF) Award (2017–2018), and The Center for Science of Information, an NSF Science and Technology Center, Cooperative Agreement CCF–0939370. Anat Paskin-Cherniavsky and Tom Suad are supported by the Ariel Cyber Innovation Center in conjunction with the Israel National Cyber directorate in the Prime Minister’s Office. Mingyuan Wang is also supported in part by DARPA under Agreement No. HR00112020026, AFOSR Award FA9550-19-1-0200, NSF CNS Award 1936826, and research grants by the Sloan Foundation, and Visa Inc. Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the United States Government or DARPA.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 79.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 99.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    This random linear code only needs to be chosen once. With only an exponentially small failure probability, the Massey secret-sharing scheme corresponding to this code shall be leakage-resilient. For instance, this random linear code can be specified by, for example, a common random string (CRS).

  2. 2.

    This observation is due to that a random square matrix over a large enough field F is full-rank with overwhelming probability.

References

  1. Adams, D. Q., et al.: Lower bounds for leakage-resilient secret sharing schemes against probing attacks. In: IEEE International Symposium on Information Theory ISIT 2021 (2021)

    Google Scholar 

  2. Aggarwal, D., et al.: Stronger leakage-resilient and non-malleable secret sharing schemes for general access structures. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol. 11693, pp. 510–539. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26951-7_18

    Chapter  Google Scholar 

  3. Arora, S., Barak, B.: Computational Complexity: A Modern Approach. Cambridge University Press, Cambridge (2009)

    Book  MATH  Google Scholar 

  4. Badrinarayanan, S., Srinivasan, A.: Revisiting non-malleable secret sharing. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019. LNCS, vol. 11476, pp. 593–622. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17653-2_20

    Chapter  Google Scholar 

  5. Benhamouda, F., Degwekar, A., Ishai, Y., Rabin, T.: On the local leakage resilience of linear secret sharing schemes. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10991, pp. 531–561. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96884-1_18

    Chapter  Google Scholar 

  6. Benhamouda, F., Degwekar, A., Ishai, Y., Rabin, T.: On the local leakage resilience of linear secret sharing schemes. J. Cryptol. 34(2), 1–65 (2021). https://doi.org/10.1007/s00145-021-09375-2

    Article  MathSciNet  MATH  Google Scholar 

  7. Block, A.R., Maji, H.K., Nguyen, H.H.: Secure computation based on leaky correlations: high resilience setting. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol. 10402, pp. 3–32. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63715-0_1

    Chapter  Google Scholar 

  8. Block, A.R., Maji, H.K., Nguyen, H.H.: Secure computation with constant communication overhead using multiplication embeddings. In: Chakraborty, D., Iwata, T. (eds.) INDOCRYPT 2018. LNCS, vol. 11356, pp. 375–398. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-05378-9_20

    Chapter  Google Scholar 

  9. Bogdanov, A., Ishai, Y., Srinivasan, A.: Unconditionally secure computation against low-complexity leakage. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol. 11693, pp. 387–416. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26951-7_14

    Chapter  Google Scholar 

  10. Cascudo, I., Cramer, R., Xing, C., Yuan, C.: Amortized complexity of information-theoretically secure MPC revisited. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10993, pp. 395–426. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96878-0_14

    Chapter  Google Scholar 

  11. Chattopadhyay, E., et al.: Extractors and secret sharing against bounded collusion protocols. In: 61st Annual Symposium on Foundations of Computer Science, Durham, NC, USA, 16–19 November 2020, pp. 1226–1242. IEEE (2020). https://doi.org/10.1109/FOCS46700.2020.00117

  12. Cramer, R.: The arithmetic codex: theory and applications. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 1–1. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20465-4_1

    Chapter  Google Scholar 

  13. Garcia, A., Stichtenoth, H.: A tower of Artin-Schreier extensions of function fields attaining the Drinfeld-Vladut bound. Inventiones Math. 121(1), 211–222 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  14. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or A completeness theorem for protocols with honest majority. In: Alfred A., ed., 19th Annual ACM Symposium on Theory of Computing, New York City, NY, USA, 25–27 May 1987, pp. 218–229. ACM Press (1987). https://doi.org/10.1145/28395.28420

  15. Goppa, V.D.: A new class of linear correcting codes. Problemy Peredachi Informatsii 6(3), 24–30 (1970)

    MathSciNet  MATH  Google Scholar 

  16. Goyal, V., Kumar, A.: Non-malleable secret sharing. In: Diakonikolas, I., Kempe, D., Henzinger, M., (eds.), 50th Annual ACM Symposium on Theory of Computing, Los Angeles, CA, USA, 25–29 June 2018, pp. 685–698. ACM Press (2018). https://doi.org/10.1145/3188745.3188872

  17. Guruswami, V., Wootters, M.: Repairing reed-solomon codes. In: Wichs, D., Mansour, Y., (eds.), 48th Annual ACM Symposium on Theory of Computing, Cambridge, MA, USA, 18–21 June 2016, pp. 216–226. ACM Press (2018). https://doi.org/10.1145/2897518.2897525

  18. Guruswami, V., Wootters, M.: Repairing reed-solomon codes. IEEE Trans. Inf. Theory 63(9), 5684–5698 (2017). https://doi.org/10.1109/TIT.2017.2702660

    Article  MathSciNet  MATH  Google Scholar 

  19. Kalai, Y.T., Reyzin, L.: A survey of leakage-resilient cryptography. Cryptology ePrint Archive, Report 2019/302 (2019). https://eprint.iacr.org/2019/302

  20. Kocher, P.C.: Timing attacks on implementations of Diffie-Hellman, RSA, DSS, and other systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 104–113. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-68697-5_9

    Chapter  Google Scholar 

  21. Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48405-1_25

    Chapter  Google Scholar 

  22. Kumar, A., Meka, R., Sahai, A.: Leakage-resilient secret sharing against colluding parties. In: Zuckerman, D., ed., 60th Annual Symposium on Foundations of Computer Science, Baltimore, MD, USA, 9–12 November 2019, pp. 636–660. IEEE Computer Society Press (2019). https://doi.org/10.1109/FOCS.2019.00045

  23. Lin, F., Cheraghchi, M., Guruswami, V., Safavi-Naini, R., Wang, H.: Leakage-resilient secret sharing in non-compartmentalized models. In: Kalai, Y.T., Smith, A.D., Wichs, D., (eds.), ITC 2020: 1st Conference on Information-Theoretic Cryptography, Boston, MA, USA, 17–19 June 2020, pp. 7:1–7:24. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik. https://doi.org/10.4230/LIPIcs.ITC.2020.7

  24. Florence Jessie MacWilliams and Neil James Alexander Sloane: The Theory of Error Correcting Codes, vol. 16. Elsevier, Amsterdam (1977)

    Google Scholar 

  25. Maji, H.K., Nguyen, H.H., Paskin-Cherniavsky, A., Suad, T., Wang, M.: Leakage-resilience of the Shamir secret-sharing scheme against physical-bit leakages. In: Canteaut, A., Standaert, F.-X. (eds.) EUROCRYPT 2021. LNCS, vol. 12697, pp. 344–374. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-77886-6_12

    Chapter  Google Scholar 

  26. Maji, H.K., et al.: Tight estimate of the local leakage resilience of the additive secret-sharing scheme & its consequences. In: Dachman-Soled, D., ed., 3rd Conference on Information-Theoretic Cryptography, ITC 2022, 5–7 July 2022, Cambridge, MA, USA, volume 230 of LIPIcs, pp. 16:1–16:19. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2022). https://doi.org/10.4230/LIPIcs.ITC.2022.16

  27. Maji, H.K., Nguyen, H.H., Paskin-Cherniavsky, A., Wang, M.: Improved bound on the local leakage-resilience of Shamir’s secret sharing. In IEEE International Symposium on Information Theory, ISIT 2022, Espoo, Finland, 26 June–1 July 2022, pp. 2678–2683. IEEE (2022). https://doi.org/10.1109/ISIT50566.2022.9834695

  28. Maji, H.K., Paskin-Cherniavsky, A., Suad, T., Wang, M.: Constructing locally leakage-resilient linear secret-sharing schemes. In: Malkin, T., Peikert, C. (eds.) CRYPTO 2021. LNCS, vol. 12827, pp. 779–808. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-84252-9_26

    Chapter  Google Scholar 

  29. Massey, J.L.: Threshold decoding (1963)

    Google Scholar 

  30. Massey, J.L.: Some applications of coding theory in cryptography. Mat. Contemp. 21(16), 187–209 (2001)

    MathSciNet  MATH  Google Scholar 

  31. Nielsen, J.B., Simkin, M.: Lower bounds for leakage-resilient secret sharing. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020. LNCS, vol. 12105, pp. 556–577. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45721-1_20

    Chapter  Google Scholar 

  32. Pietrzak, K.: Cryptography from learning parity with noise. In: Bieliková, M., Friedrich, G., Gottlob, G., Katzenbeisser, S., Turán, G. (eds.) SOFSEM 2012. LNCS, vol. 7147, pp. 99–114. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-27660-6_9

    Chapter  Google Scholar 

  33. Regev, O.: The learning with errors problem. Invited Surv. CCC 7(30), 11 (2010)

    Google Scholar 

  34. Shamir, A.: How to share a secret. Commun. Assoc. Comput. Mach. 22(11), 612–613 (1979)

    MathSciNet  MATH  Google Scholar 

  35. Srinivasan, A., Vasudevan, P.N.: Leakage resilient secret sharing and applications. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol. 11693, pp. 480–509. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26951-7_17

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hai H. Nguyen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Maji, H.K. et al. (2022). Leakage-resilient Linear Secret-sharing Against Arbitrary Bounded-size Leakage Family. In: Kiltz, E., Vaikuntanathan, V. (eds) Theory of Cryptography. TCC 2022. Lecture Notes in Computer Science, vol 13747. Springer, Cham. https://doi.org/10.1007/978-3-031-22318-1_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-22318-1_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-22317-4

  • Online ISBN: 978-3-031-22318-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics