Abstract
A rectangular drawing of a planar graph G is a planar drawing of G in which vertices are mapped to grid points, edges are mapped to horizontal and vertical straight-line segments, and faces are drawn as rectangles. Sometimes this latter constraint is relaxed for the outer face. In this paper, we study rectangular drawings in which the edges have unit length. We show a complexity dichotomy for the problem of deciding the existence of a unit-length rectangular drawing, depending on whether the outer face must also be drawn as a rectangle or not. Specifically, we prove that the problem is \(\textsf{NP}\)-complete for biconnected graphs when the drawing of the outer face is not required to be a rectangle, even if the sought drawing must respect a given planar embedding, whereas it is polynomial-time solvable, both in the fixed and the variable embedding settings, if the outer face is required to be drawn as a rectangle.
This research was partially supported by MIUR Project “AHeAD” under PRIN 20174LF3T8, and by H2020-MSCA-RISE project 734922 – “CONNECT”.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Note that in some literature the term “grid graph” denotes an “induced” graph, i.e., there is an edge between any two vertices at distance one. See, for example, [31].
References
Abel, Z., Demaine, E.D., Demaine, M.L., Eisenstat, S., Lynch, J., Schardl, T.B.: Who needs crossings? Hardness of plane graph rigidity. In: Fekete, S.P., Lubiw, A. (eds.) 32nd International Symposium on Computational Geometry (SoCG 2016). LIPIcs, vol. 51, pp. 3:1–3:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2016). https://doi.org/10.4230/LIPIcs.SoCG.2016.3
Alegría, C., Borrazzo, M., Da Lozzo, G., Di Battista, G., Frati, F., Patrignani, M.: Planar straight-line realizations of 2-trees with prescribed edge lengths. In: Purchase, H.C., Rutter, I. (eds.) GD 2021. LNCS, vol. 12868, pp. 166–183. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-92931-2_12
Alegría, C., Da Lozzo, G., Di Battista, G., Frati, F., Grosso, F., Patrignani, M.: Unit-length rectangular drawings of graphs. CoRR abs/2208.14142 (2022). https://arxiv.org/abs/2208.14142
Angelini, P., et al.: Anchored drawings of planar graphs. In: Duncan, C., Symvonis, A. (eds.) GD 2014. LNCS, vol. 8871, pp. 404–415. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45803-7_34
Angelini, P., Da Lozzo, G., Frati, F., Lubiw, A., Patrignani, M., Roselli, V.: Optimal morphs of convex drawings. In: Arge, L., Pach, J. (eds.) 31st International Symposium on Computational Geometry, SoCG 2015, 22–25 June 2015, Eindhoven, The Netherlands. LIPIcs, vol. 34, pp. 126–140. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2015). https://doi.org/10.4230/LIPIcs.SOCG.2015.126
Asgharian Sardroud, A., Bagheri, A.: Embedding cycles and paths on solid grid graphs. J. Supercomputing 73(4), 1322–1336 (2016). https://doi.org/10.1007/s11227-016-1811-y
Beck, M., Storandt, S.: Puzzling grid embeddings. In: Blelloch, G.E., Finocchi, I. (eds.) Proceedings of the Symposium on Algorithm Engineering and Experiments, ALENEX 2020, Salt Lake City, UT, USA, 5–6 January 2020, pp. 94–105. SIAM (2020)
de Berg, M., Khosravi, A.: Optimal binary space partitions for segments in the plane. Int. J. Comput. Geom. Appl. 22(03), 187–205 (2012). https://doi.org/10.1142/S0218195912500045
Bhatt, S.N., Cosmadakis, S.S.: The complexity of minimizing wire lengths in VLSI layouts. Inf. Process. Lett. 25(4), 263–267 (1987). https://doi.org/10.1016/0020-0190(87)90173-6
Biedl, T.C., Kant, G.: A better heuristic for orthogonal graph drawings. Comput. Geom. 9(3), 159–180 (1998). https://doi.org/10.1016/S0925-7721(97)00026-6
Borradaile, G., Klein, P.N., Mozes, S., Nussbaum, Y., Wulff-Nilsen, C.: Multiple-source multiple-sink maximum flow in directed planar graphs in near-linear time. SIAM J. Comput. 46(4), 1280–1303 (2017). https://doi.org/10.1137/15M1042929
Cabello, S., Demaine, E.D., Rote, G.: Planar embeddings of graphs with specified edge lengths. J. Graph Algorithms Appl. 11(1), 259–276 (2007). https://doi.org/10.7155/jgaa.00145
Chang, Y., Yen, H.: On bend-minimized orthogonal drawings of planar 3-graphs. In: 33rd International Symposium on Computational Geometry, SoCG 2017, 4–7 July 2017, Brisbane, Australia, pp. 29:1–29:15 (2017). https://doi.org/10.4230/LIPIcs.SoCG.2017.29
Cornelsen, S., Karrenbauer, A.: Accelerated bend minimization. J. Graph Algorithms Appl. 16(3), 635–650 (2012). https://doi.org/10.7155/jgaa.00265
Di Battista, G., Eades, P., Tamassia, R., Tollis, I.G.: Graph Drawing: Algorithms for the Visualization of Graphs. Prentice-Hall (1999)
Di Battista, G., Liotta, G., Vargiu, F.: Spirality and optimal orthogonal drawings. SIAM J. Comput. 27(6), 1764–1811 (1998). https://doi.org/10.1137/S0097539794262847
Di Battista, G., Tamassia, R.: On-line maintenance of triconnected components with SPQR-trees. Algorithmica 15(4), 302–318 (1996). https://doi.org/10.1007/BF01961541
Di Battista, G., Tamassia, R.: On-line planarity testing. SIAM J. Comput. 25(5), 956–997 (1996)
Di Battista, G., Tamassia, R., Vismara, L.: Incremental convex planarity testing. Inf. Comput. 169(1), 94–126 (2001). https://doi.org/10.1006/inco.2001.3031
Didimo, W., Kaufmann, M., Liotta, G., Ortali, G.: Rectilinear planarity testing of plane series-parallel graphs in linear time. In: GD 2020. LNCS, vol. 12590, pp. 436–449. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-68766-3_34
Didimo, W., Liotta, G., Ortali, G., Patrignani, M.: Optimal orthogonal drawings of planar 3-graphs in linear time. In: Chawla, S. (ed.) Proceedings of ACM-SIAM Symposium on Discrete Algorithms (SODA 2020), pp. 806–825. ACM-SIAM (2020). https://doi.org/10.1137/1.9781611975994.49
Eades, P., Wormald, N.C.: Fixed edge-length graph drawing is NP-hard. Disc. Appl. Math. 28(2), 111–134 (1990). https://doi.org/10.1016/0166-218X(90)90110-X
Felsner, S.: Rectangle and square representations of planar graphs. In: Pach, J. (ed.) Thirty Essays on Geometric Graph Theory, pp. 213–248. Springer, New York (2013). https://doi.org/10.1007/978-1-4614-0110-0_12
Frati, F.: Planar rectilinear drawings of outerplanar graphs in linear time. In: Auber, D., Valtr, P. (eds.) GD 2020. LNCS, vol. 12590, pp. 423–435. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-68766-3_33
Garg, A., Liotta, G.: Almost bend-optimal planar orthogonal drawings of biconnected degree-3 planar graphs in quadratic time. In: Kratochvíyl, J. (ed.) GD 1999. LNCS, vol. 1731, pp. 38–48. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-46648-7_4
Garg, A., Tamassia, R.: On the computational complexity of upward and rectilinear planarity testing. SIAM J. Comput. 31(2), 601–625 (2001). https://doi.org/10.1137/S0097539794277123
Gregori, A.: Unit-length embedding of binary trees on a square grid. Inf. Process. Lett. 31(4), 167–173 (1989). https://doi.org/10.1016/0020-0190(89)90118-X
Gupta, S., Sa’ar, G., Zehavi, M.: Grid recognition: classical and parameterized computational perspectives (2021). https://doi.org/10.48550/ARXIV.2106.16180
Hasan, M.M., Rahman, M.S.: No-bend orthogonal drawings and no-bend orthogonally convex drawings of planar graphs (extended abstract). In: Du, D.-Z., Duan, Z., Tian, C. (eds.) COCOON 2019. LNCS, vol. 11653, pp. 254–265. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26176-4_21
Hopcroft, J., Tarjan, R.: Algorithm 447: efficient algorithms for graph manipulation. Commun. ACM 16(6), 372–378 (1973). https://doi.org/10.1145/362248.362272
Itai, A., Papadimitriou, C.H., Szwarcfiter, J.L.: Hamilton paths in grid graphs. SIAM J. Comput. 11(4), 676–686 (1982). https://doi.org/10.1137/0211056
Kant, G.: Drawing planar graphs using the canonical ordering. Algorithmica 16(1), 4–32 (1996). https://doi.org/10.1007/BF02086606
Liu, Y., Morgana, A., Simeone, B.: A linear algorithm for 2-bend embeddings of planar graphs in the two-dimensional grid. Discrete Appl. Math. 81(1–3), 69–91 (1998). https://doi.org/10.1016/S0166-218X(97)00076-0
Miura, K., Haga, H., Nishizeki, T.: Inner rectangular drawings of plane graphs. Int. J. Comput. Geom. Appl. 16(2–3), 249–270 (2006). https://doi.org/10.1142/S0218195906002026
Nishizeki, T., Rahman, M.S.: Planar Graph Drawing, Lecture Notes Series on Computing, vol. 12. World Scientific (2004). https://doi.org/10.1142/5648
Nishizeki, T., Rahman, M.S.: Rectangular drawing algorithms. In: Tamassia, R. (ed.) Handbook on Graph Drawing and Visualization, pp. 317–348. Chapman and Hall/CRC (2013)
Rahman, M.S., Egi, N., Nishizeki, T.: No-bend orthogonal drawings of series-parallel graphs. In: Healy, P., Nikolov, N.S. (eds.) GD 2005. LNCS, vol. 3843, pp. 409–420. Springer, Heidelberg (2006). https://doi.org/10.1007/11618058_37
Rahman, M.S., Egi, N., Nishizeki, T.: No-bend orthogonal drawings of subdivisions of planar triconnected cubic graphs. IEICE Trans. 88-D(1), 23–30 (2005)
Rahman, M.S., Nakano, S., Nishizeki, T.: Rectangular grid drawings of plane graphs. Comput. Geom. 10(3), 203–220 (1998). https://doi.org/10.1016/S0925-7721(98)00003-0
Rahman, M.S., Nakano, S., Nishizeki, T.: A linear algorithm for bend-optimal orthogonal drawings of triconnected cubic plane graphs. J. Graph Algorithms Appl. 3(4), 31–62 (1999). http://www.cs.brown.edu/publications/jgaa/accepted/99/SaidurNakanoNishizeki99.3.4.pdf
Rahman, M.S., Nishizeki, T.: Bend-minimum orthogonal drawings of plane 3-graphs. In: Graph-Theoretic Concepts in Computer Science, 28th International Workshop, WG 2002, Cesky Krumlov, Czech Republic, 13–15 June 2002, Revised Papers, pp. 367–378 (2002). https://doi.org/10.1007/3-540-36379-3_32
Rahman, M.S., Nishizeki, T., Ghosh, S.: Rectangular drawings of planar graphs. J. Algorithms 50(1), 62–78 (2004). https://doi.org/10.1016/S0196-6774(03)00126-3
Rahman, M.S., Nishizeki, T., Naznin, M.: Orthogonal drawings of plane graphs without bends. J. Graph Algorithms Appl. 7(4), 335–362 (2003). http://jgaa.info/accepted/2003/Rahman+2003.7.4.pdf
Schaefer, M.: Realizability of graphs and linkages. In: Pach, J. (ed.) Thirty Essays on Geometric Graph Theory, pp. 461–482. Springer, New York (2013). https://doi.org/10.1007/978-1-4614-0110-0_24
Storer, J.A.: The node cost measure for embedding graphs on the planar grid (extended abstract). In: Miller, R.E., Ginsburg, S., Burkhard, W.A., Lipton, R.J. (eds.) Proceedings of the 12th Annual ACM Symposium on Theory of Computing, 28–30 April 1980, Los Angeles, California, USA, pp. 201–210. ACM (1980). https://doi.org/10.1145/800141.804667
Tamassia, R.: On embedding a graph in the grid with the minimum number of bends. SIAM J. Comput. 16(3), 421–444 (1987). https://doi.org/10.1137/0216030
Thomassen, C.: Plane representations of graphs. In: Bondy, J., Murty, U. (eds.) Progress in Graph Theory, pp. 43–69. Academic Press, Toronto, Orlando (1987)
Ungar, P.: On Diagrams Representing Maps. J. London Math. Soc. s1–28(3), 336–342 (1953). https://doi.org/10.1112/jlms/s1-28.3.336
Vijayan, G., Wigderson, A.: Rectilinear graphs and their embeddings. SIAM J. Comput. 14(2), 355–372 (1985)
Zhou, X., Nishizeki, T.: Orthogonal drawings of series-parallel graphs with minimum bends. SIAM J. Discrete Math. 22(4), 1570–1604 (2008). https://doi.org/10.1137/060667621
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Alegría, C., Da Lozzo, G., Di Battista, G., Frati, F., Grosso, F., Patrignani, M. (2023). Unit-length Rectangular Drawings of Graphs. In: Angelini, P., von Hanxleden, R. (eds) Graph Drawing and Network Visualization. GD 2022. Lecture Notes in Computer Science, vol 13764. Springer, Cham. https://doi.org/10.1007/978-3-031-22203-0_10
Download citation
DOI: https://doi.org/10.1007/978-3-031-22203-0_10
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-22202-3
Online ISBN: 978-3-031-22203-0
eBook Packages: Computer ScienceComputer Science (R0)