[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Optimal Window Queries on Line Segments Using the Trapezoidal Search DAG

  • Conference paper
  • First Online:
Computing and Combinatorics (COCOON 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13595))

Included in the following conference series:

  • 834 Accesses

Abstract

We propose a new query application for the well-known Trapezoidal Search DAG (TSD) of a set of n line segments in the plane, where queries are allowed to be vertical line segments.

We show that a simple Depth-First Search reports the k trapezoids that are intersected by the query segment in \(\mathcal{O}(k+\log n)\) expected time, regardless of the spatial location of the query. This bound is optimal and matches known data structures with \(\mathcal {O}(n)\) size. In the important case of edges from a connected, planar graph, our simplistic approach yields an expected \(\mathcal{O}(n \log ^*\!n)\) construction time, which improves on the construction time of known structures for vertical segment-queries. Also for connected input, a simple extension allows the TSD approach to directly answer axis-aligned window-queries in \(\mathcal{O}(k + \log n)\) expected time, where k is the result size.

See https://arxiv.org/abs/2111.07024 for the full version of this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 55.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 69.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    I.e. the number of times the \(\log \)-function must be applied to obtain a result \(\le 1\).

  2. 2.

    Our TSD construction in Sect. 2 uses one node of arity four per trapezoid in \(\mathcal T\).

References

  1. Bentley, J.L.: Solutions to Klee’s rectangle problem. Department of Computer Science, Carnegie-Mellon University (1977, unpublished manuscript)

    Google Scholar 

  2. Bentley, J.L.: Multidimensional binary search trees used for associative searching. Commun. ACM 18(9), 509–517 (1975)

    Article  MATH  Google Scholar 

  3. Berberich, E., Fogel, E., Halperin, D., Mehlhorn, K., Wein, R.: Arrangements on parametric surfaces I: general framework and infrastructure. Math. Comput. Sci. 4(1), 45–66 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  4. de Berg, M., Cheong, O., van Kreveld, M.J., Overmars, M.H.: Computational Geometry: Algorithms and Applications, 3rd edn. Springer (2008)

    Google Scholar 

  5. Chan, T.M.: Persistent predecessor search and orthogonal point location on the word RAM. ACM Trans. Algorithms 9(3), 22:1–22:22 (2013)

    Google Scholar 

  6. Chazelle, B.: Filtering search: a new approach to query-answering. SIAM J. Comput. 15(3), 703–724 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  7. Clarkson, K.L., Shor, P.W.: Application of random sampling in computational geometry, II. Discret. Comput. Geom. 4, 387–421 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  8. Driscoll, J.R., Sarnak, N., Sleator, D.D., Tarjan, R.E.: Making data structures persistent. In: Proceedings of ACM STOC, pp. 109–121. Association for Computing Machinery, New York (1986)

    Google Scholar 

  9. Edelsbrunner, H.: Dynamic data structures for orthogonal intersection queries. Technische Universität Graz/Forschungszentrum Graz (1980)

    Google Scholar 

  10. Guttman, A.: R-trees: a dynamic index structure for spatial searching. In: Yormark, B. (ed.) Proceedings of ACM SIGMOD, pp. 47–57. ACM Press (1984)

    Google Scholar 

  11. Hemmer, M., Kleinbort, M., Halperin, D.: Improved implementation of point location in general two-dimensional subdivisions. In: Proceedings of ESA, pp. 611–623 (2012)

    Google Scholar 

  12. McCreight, E.M.: Priority search trees. SIAM J. Comput. 14(2), 257–276 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  13. Mulmuley, K.: A fast planar partition algorithm, I. J. Symb. Comput. 10(3/4), 253–280 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  14. Mulmuley, K.: A fast planar partition algorithm, II. J. ACM 38(1), 74–103 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  15. Sarnak, N., Tarjan, R.E.: Planar point location using persistent search trees. Commun. ACM 29(7), 669–679 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  16. Seidel, R.: A simple and fast incremental randomized algorithm for computing trapezoidal decompositions and for triangulating polygons. Comput. Geom. 1, 51–64 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  17. Seidel, R.: Teaching computational geometry. In: Proceedings of the 5th Canadian Conference on Computational Geometry, CCCG 1993, p. 272 (1993)

    Google Scholar 

Download references

Acknowledgements

The authors want to thank Joachim Gudmundsson for suggesting the BFS query of Corollary 1 and an anonymous reviewer for constructive feedback. This work was supported under the Australian Research Council Discovery Projects funding scheme (project number DP180102870).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin P. Seybold .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Brankovic, M., Seybold, M.P. (2022). Optimal Window Queries on Line Segments Using the Trapezoidal Search DAG. In: Zhang, Y., Miao, D., Möhring, R. (eds) Computing and Combinatorics. COCOON 2022. Lecture Notes in Computer Science, vol 13595. Springer, Cham. https://doi.org/10.1007/978-3-031-22105-7_46

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-22105-7_46

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-22104-0

  • Online ISBN: 978-3-031-22105-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics