[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Two-Stage BP Maximization Under p-matroid Constraint

  • Conference paper
  • First Online:
Computing and Combinatorics (COCOON 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13595))

Included in the following conference series:

  • 833 Accesses

Abstract

The BP problem maximizes the sum of a suBmodular function and a suPermodular function(BP) subject to some constraints, where both functions are nonnegative and monotonic. This problem has been widely studied under the single-stage setting. In this paper, we consider a variant of the BP maximization problem. The problem is a two-stage BP maximization problem subject to a p-matroid constraint, for which we propose an approximation algorithm with constant approximation ratio parameterized by the curvatures of the two functions involved.

Supported by NSFC (Nos.11871280,12101314), NSERC grant 06446, Qinglan Project, Natural Science Foundation of Jiangsu Province (No. BK20200723), and Jiangsu Province Higher Education Foundation (No. 20KJB110022).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 55.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 69.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bai, W., Bilmes, J.A.: Greed is still good: maximizing monotone submodular+supermodular (BP) functions. In: ICML, pp. 304–313 (2018)

    Google Scholar 

  2. Balkanski, E., Krause, A., Mirzasoleiman, B., Singer, Y.: Learning sparse combinatorial representations via two-stage submodular maximization. In: ICML, pp. 2207–2216 (2016)

    Google Scholar 

  3. Conforti, M., Cornuejols, G.: Submodular set functions, matroids and the greedy algorithm: tight worst-case bounds and some generalizations of the Rado-Edmonds theorem. Discret. Appl. Math. 7(3), 251–274 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  4. Fisher, M.L., Nemhauser, G.L., Wolsey, L.A.: An analysis of approximations for maximizing submodular set functions-ii. In: Balinski, M.L., Hoffman, A.J. (eds.) Polyhedral Combinatorics, vol. 8, pp. 73–87. Springer, Cham (1978). https://doi.org/10.1007/BFb0121195

  5. Krause, A., Guestrin, A.: Near-optimal nonmyopic value of information in graphical models. In: UAI, vol. 5 (2005)

    Google Scholar 

  6. Lee, J., Mirrokni, V.S., Nagarajan, V., Sviridenko, M.: Maximizing nonmonotone submodular functions under matroid or knapsack constraints. SIAM J. Discret. Math. 23(4), 2053–2078 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  7. Laitila, J., Moilanen, A.: New performance guarantees for the greedy maximization of submodular set functions. Optim. Lett. 11, 655–665 (2017). https://doi.org/10.1007/s11590-016-1039-z

    Article  MathSciNet  MATH  Google Scholar 

  8. Mitrovic, M., Kazemi, E., Zadimoghaddam, M., Karbasi, A.: Data summarization at scale: a two-stage submodular approach. In: ICML, pp. 3593–3602 (2018)

    Google Scholar 

  9. Mairal, J., Bach, F., Ponce, J., Sapiro, G.: Online dictionary learning for sparse coding. In: ICML, pp. 689–696 (2009)

    Google Scholar 

  10. Maas, A.L., Daly, R.E., Pham, P.T., Huang, D., Ng, A.Y., Potts, C.: Learning word vectors for sentiment analysis. In: ACL-HLT, vol. 1, pp. 142–150 (2011)

    Google Scholar 

  11. Nemhauser, G.L., Wolsey, L.A., Fisher, M.L.: An analysis of approximations for maximizing submodular set functions-i. Math. Programm. 14(1), 265–294 (1978). https://doi.org/10.1007/BF01588971

    Article  MathSciNet  MATH  Google Scholar 

  12. Schulz, A.S., Uhan, N.A.: Approximating the least core value and least core of cooperative games with supermodular costs. Discrete Optim. 10(2), 163–180 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  13. Stan, S., Zadimoghaddam, M., Krause, A., Karbasi, A.: Probabilistic submodular maximization in sub-linear time. In: ICML, pp. 3241–3250 (2017)

    Google Scholar 

  14. Vincent, P., Larochelle, H., Lajoie, I., Bengio, Y., Manzagol, P.: Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion. J. Mach. Learn. Res. 11, 3371–3408 (2010)

    MathSciNet  MATH  Google Scholar 

  15. Wei, K., Iyer, R., Bilmes, J.: Submodularity in data subset selection and active learning. In: Proceedings of ICML, pp. 1954–1963 (2015)

    Google Scholar 

  16. Yang, R., Gu, S., Gao, C., Wu, W., Wang, H., Xu, D.: A constrained two-stage submodular maximization. Theor. Comput. Sci. 853, 57–64 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  17. Zhou, M., Chen, H., Ren, L., Sapiro, G., Carin, L., Paisley, J.W.: Non-parametric Bayesian dictionary learning for sparse image representations. In: NIPS, pp. 2295–2303 (2009)

    Google Scholar 

Download references

Acknowledgements

The research is supported by NSFC(Nos. 11871280, 12101314, 12271259, 11971349), NSERC(No. 06446), Qinglan Project, Natural Science Foundation of Jiangsu Province (No. BK20200723), and Jiangsu Province Higher Education Foundation (No.20KJB110022).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoyan Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chang, H., Liu, Z., Du, D., Zhang, X. (2022). Two-Stage BP Maximization Under p-matroid Constraint. In: Zhang, Y., Miao, D., Möhring, R. (eds) Computing and Combinatorics. COCOON 2022. Lecture Notes in Computer Science, vol 13595. Springer, Cham. https://doi.org/10.1007/978-3-031-22105-7_40

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-22105-7_40

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-22104-0

  • Online ISBN: 978-3-031-22105-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics