[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Bounding the Number of Eulerian Tours in Undirected Graphs

  • Conference paper
  • First Online:
Computing and Combinatorics (COCOON 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13595))

Included in the following conference series:

Abstract

Given an undirected multigraph \(G=(V,E)\) with no self-loops, and one of its nodes \(s\in V\) of degree d(s), we consider the #P-complete problem of counting the number \(ET^{(e)}_s(G)\) of its Eulerian tours starting and ending at node s. We provide lower and upper bounds on the size of \(ET^{(e)}_s(G)\): \( 2^{1-|V|+|E|} \le |ET^{(e)}_{s}(G)| \le d(s) \, 2^{|E| \log _2 \left( \frac{|E|}{|V|}\right) + \frac{|V|}{2}}\).

We also consider the notion of node-distinct Eulerian tours. Indeed, the classical Eulerian tours are edge-distinct sequences. Node-distinct Eulerian tours should instead be different as node sequences. Letting \(ET^{(n)}_s(G)\) denote the set of node-distinct Eulerian tours in G, we show \(2^{1-|V|+\frac{1}{2}\sum _{u \in V}\varDelta (u)}\!\le \! |ET^{(n)}_{s}(G)|\!\le \! d(s) 2^{|E| \log _2 \left( \frac{|E|}{|V|}\right) + \frac{|V|}{2}}\cdot \textstyle \prod _{e\in D} m(e)!^{-1}\) where \(\varDelta (u)\) is the number of distinct neighbors of node u, \(D \subseteq E\) is the set of distinct edges in the multigraph G, and m(e) for an edge \(e\in E\) denotes its multiplicity (i.e. \(|E|=\sum _{e \in D} m(e)\)).

Student work partially supported by the Italian MIUR project AHeAD.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 55.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 69.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    It is easy to see by induction that \(k!!\ge 2^{(k-1)/2}\) for all \(k\ge 1\), and since G is Eulerian, \(d(v) \ge 2\) for all \(v\in V\).

  2. 2.

    By a simple induction, we have \((k-1)!! \ge \exp (\frac{k-1}{2})\) for all \(k\ge 3\).

References

  1. van Aardenne-Ehrenfest, T., de Bruijn, N.G.: Circuits and trees in oriented linear graphs. In: Classic Papers in Combinatorics, pp. 149–163. Birkhäuser Boston, Boston (1987). https://doi.org/10.1007/978-0-8176-4842-8_12

  2. Bent, S.W., Manber, U.: On non-intersecting Eulerian circuits. Discret. Appl. Math. 18(1), 87–94 (1987)

    Article  MATH  Google Scholar 

  3. Bernardini, G., Chen, H., Fici, G., Loukides, G., Pissis, S.P.: Reverse-safe data structures for text indexing. In: Proceedings of the Symposium on Algorithm Engineering and Experiments, ALENEX 2020, Salt Lake City, UT, USA, 5–6 January 2020, pp. 199–213 (2020)

    Google Scholar 

  4. Brightwell, G.R., Winkler, P.: Counting Eulerian circuits is #P-complete. In: ALENEX/ANALCO, pp. 259–262. ACM SIAM (2005)

    Google Scholar 

  5. Conte, A., Grossi, R., Loukides, G., Pisanti, N., Pissis, S.P., Punzi, G.: Beyond the BEST theorem: fast assessment of Eulerian trails. In: Bampis, E., Pagourtzis, A. (eds.) FCT 2021. LNCS, vol. 12867, pp. 162–175. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-86593-1_11

    Chapter  MATH  Google Scholar 

  6. Creed, P.J.: Counting and sampling problems on Eulerian graphs. Ph.D. thesis, University of Edinburgh (2010)

    Google Scholar 

  7. Euler, L.: Solutio problematis ad geometriam situs pertinentis. Commentarii Academiae Scientiarum Imperialis Petropolitanae 8, 128–140 (1736)

    Google Scholar 

  8. Fleischner, H.: (Some of) the many uses of Eulerian graphs in graph theory (plus some applications). Discret. Math. 230(1), 23–43 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  9. Ge, Q., Štefankovič, D.: The complexity of counting Eulerian tours in 4-regular graphs. Algorithmica 63(3), 588–601 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  10. Hierholzer, C., Wiener, C.: Über die möglichkeit, einen linienzug ohne wiederholung und ohne unterbrechung zu umfahren. Math. Ann. 6(1), 30–32 (1873)

    Article  MathSciNet  MATH  Google Scholar 

  11. Las Vergnas, M.: Le polynôme de Martin d’un graphe Eulerien. In: Berge, C., Bresson, D., Camion, P., Maurras, J., Sterboul, F. (eds.) Combinatorial Mathematics, North-Holland Mathematics Studies, vol. 75, pp. 397–411. North-Holland (1983)

    Google Scholar 

  12. Las Vergnas, M.: An upper bound for the number of Eulerian orientations of a regular graph. Combinatorica 10(1), 61–65 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  13. Mihail, M., Winkler, P.: On the number of Eulerian orientations of a graph. Algorithmica 16(4/5), 402–414 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  14. Pevzner, P.A., Tang, H., Waterman, M.S.: An Eulerian path approach to DNA fragment assembly. Proc. Natl. Acad. Sci. 98(17), 9748–9753 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  15. Punzi, G.: Novel algorithms for assessing the number of solutions in graph problems. Ph.D. thesis, University of Pisa (2023)

    Google Scholar 

  16. Schrijver, A.: Bounds on the number of Eulerian orientations. Combinatorica 3(3), 375–380 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  17. Sohn, J.I., Nam, J.W.: The present and future of de novo whole-genome assembly. Brief. Bioinform. 19(1), 23–40 (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giulia Punzi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Punzi, G. (2022). Bounding the Number of Eulerian Tours in Undirected Graphs. In: Zhang, Y., Miao, D., Möhring, R. (eds) Computing and Combinatorics. COCOON 2022. Lecture Notes in Computer Science, vol 13595. Springer, Cham. https://doi.org/10.1007/978-3-031-22105-7_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-22105-7_33

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-22104-0

  • Online ISBN: 978-3-031-22105-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics