[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

The Bound Coverage Problem by Aligned Disks in \(L_1\) Metric

  • Conference paper
  • First Online:
Computing and Combinatorics (COCOON 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13595))

Included in the following conference series:

  • 821 Accesses

Abstract

In this paper, we study the bound coverage problem by aligned disks in \(L_1\) metric. Suppose U is a set of users, L is a horizontal line on the plane, and S is a set of points on the line L, where each user has a profit. This problem to select a set of disks in \(L_1\) metric such that the center of each disk is a point in S (but with arbitrary radius) and the total profit of the covered users by the selected disk set is at least B, where B is a given profit bound, the disk in \(L_1\) metric is a region with a rotated square boundary, and the relationship between the cost of a disk with radius r is \(r^{\alpha }\) (\(\alpha \ge 1\)). This objective is to minimize the total cost of the selected disks. We prove that this problem is NP-hard even when \(\alpha = 1\), and present a fully polynomial time approximation scheme based on a rounding-and-scaling technique.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 55.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 69.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Alt, H., et al.: Minimum-cost coverage of point sets by disks. In: Annual Symposium on Computational Geometry, pp. 449–458. Association for Computing Machinery, New York, NY, USA (2006)

    Google Scholar 

  2. Araki, T., Nakano, S.: Max–min dispersion on a line. J. Comb. Optim. 44, 1–7 (2020). https://doi.org/10.1007/s10878-020-00549-5

    Article  MathSciNet  Google Scholar 

  3. Bilò, V., Caragiannis, I., Kaklamanis, C., Kanellopoulos, P.: Geometric clustering to minimize the sum of cluster sizes. In: Brodal, G.S., Leonardi, S. (eds.) ESA 2005. LNCS, vol. 3669, pp. 460–471. Springer, Heidelberg (2005). https://doi.org/10.1007/11561071_42

    Chapter  Google Scholar 

  4. Dai, H., Deng, B., Li, W., Liu, X.: A note on the minimum power partial cover problem on the plane. J. Comb. Optim. 44, 970–978 (2022). https://doi.org/10.1007/s10878-022-00869-8

    Article  MathSciNet  MATH  Google Scholar 

  5. Dai, H., Li, W., Liu, X.: An approximation algorithm for the \(h\)-prize-collecting power cover problem. In: International Computing and Combinatorics Conference. Accepted (2022)

    Google Scholar 

  6. Freund, A., Rawitz, D.: Combinatorial interpretations of dual fitting and primal fitting. In: Solis-Oba, R., Jansen, K. (eds.) WAOA 2003. LNCS, vol. 2909, pp. 137–150. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24592-6_11

    Chapter  MATH  Google Scholar 

  7. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W.H Freeman and Company, USA (1979)

    MATH  Google Scholar 

  8. Lev-Tov, N., Peleg, D.: Polynomial time approximation schemes for base station coverage with minimum total radii. Comput. Netw. 47(4), 489–501 (2005)

    Article  MATH  Google Scholar 

  9. Li, M., Ran, Y., Zhang, Z.: A primal-dual algorithm for the minimum power partial cover problem. J. Comb. Optim. (2022). https://doi.org/10.1007/s10878-020-00567-3

    Article  MathSciNet  MATH  Google Scholar 

  10. Li, W., Li, J., Guan, L., Shi, Y.: The prize-collecting call control problem on weighted lines and rings. RAIRO-Oper. Res. 50, 39–46 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  11. Liang, W., Li, M., Zhang, Z., Huang, X.: Minimum power partial multi-cover on a line. Theoret. Comput. Sci. 864, 118–128 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  12. Liu, X., Dai, H., Li, S., Li, W.: \(k\)-prize-collecting minimum power cover problem with submodular penalties on a plane (In Chinese). Sci. Sinica Inf. 52(6), 947–959 (2022)

    Article  Google Scholar 

  13. Liu, X., Li, W., Dai, H.: Approximation algorithms for the minimum power cover problem with submodular/linear penalties. Theoret. Comput. Sci. 923, 256–270 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  14. Liu, X., Li, W., Xie, R.: A primal-dual approximation algorithm for the k-prize-collecting minimum power cover problem. Opt. Lett. 16, 2373–2385 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  15. Nakano, S.: The coverage problem by aligned disks. In: Chen, C.-Y., Hon, W.-K., Hung, L.-J., Lee, C.-W. (eds.) COCOON 2021. LNCS, vol. 13025, pp. 221–230. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-89543-3_19

    Chapter  Google Scholar 

  16. Ran, Y., Huang, X., Zhang, Z., Du, D.: Approximation algorithm for minimum power partial multi-coverage in wireless sensor networks. J. Global Optim. 80, 661–677 (2021). https://doi.org/10.1007/s10898-021-01033-y

    Article  MathSciNet  MATH  Google Scholar 

  17. Sahni, S.K.: Algorithms for scheduling independent tasks. J. ACM 23(1), 116–127 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  18. Xiao, M., Zhao, S., Li, W., Yang, J.: Online bottleneck semi-matching. In: Du, D.-Z., Du, D., Wu, C., Xu, D. (eds.) COCOA 2021. LNCS, vol. 13135, pp. 445–455. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-92681-6_35

    Chapter  Google Scholar 

Download references

Acknowledgements

The work is supported in part by the National Natural Science Foundation of China [No. 12071417] and the Open Project Program of Yunnan Key Laboratory of Intelligent Systems and Computing (No. ISC22Z03).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaofei Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liu, X., Liu, Z. (2022). The Bound Coverage Problem by Aligned Disks in \(L_1\) Metric. In: Zhang, Y., Miao, D., Möhring, R. (eds) Computing and Combinatorics. COCOON 2022. Lecture Notes in Computer Science, vol 13595. Springer, Cham. https://doi.org/10.1007/978-3-031-22105-7_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-22105-7_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-22104-0

  • Online ISBN: 978-3-031-22105-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics