[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

BRDF Anisotropy Criterion

  • Conference paper
  • First Online:
Intelligent Information and Database Systems (ACIIDS 2022)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13758))

Included in the following conference series:

  • 787 Accesses

Abstract

Visual scene recognition is predominantly based on visual textures representing an object’s material properties. However, the single material texture varies in scale and illumination angles due to mapping an object’s shape. We present an anisotropy criterion of bidirectional reflectance distribution function (BRDF), which allows deciding if a simpler isotropic BRDF model can be used or if it is necessary to use a more complex anisotropic BRDF model. The criterion simultaneously shows dominant angular orientations for the anisotropic materials. The anisotropic criterion is tested on several isotropic and anisotropic surface materials, with BRDF computed from the measured seven-dimensional Bidirectional Texture Function.

The Czech Science Foundation project GAČR 19-12340S supported this research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 79.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 99.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://btf.utia.cas.cz/.

References

  1. Ashikhmin, M., Shirley, P.: An anisotropic phong BRDF model. J. Graph. Tools 5(2), 25–32 (2000)

    Article  Google Scholar 

  2. Bell, S., Upchurch, P., Snavely, N., Bala, K.: Material recognition in the wild with the materials in context database. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3479–3487 (2015)

    Google Scholar 

  3. Blinn, J.F.: Models of light reflection for computer synthesized pictures. In: Proceedings of the 4th Annual Conference on Computer Graphics and Interactive Techniques, pp. 192–198. ACM Press (1977)

    Google Scholar 

  4. Cook, R.L., Torrance, K.E.: A reflectance model for computer graphics. ACM Trans. Graph. (TOG) 1(1), 7–24 (1982)

    Article  Google Scholar 

  5. Edwards, D., et al.: The halfway vector disk for BRDF modeling. ACM Trans. Graph. (TOG) 25(1), 1–18 (2006)

    Article  Google Scholar 

  6. Gibert, X., Patel, V.M., Chellappa, R.: Material classification and semantic segmentation of railway track images with deep convolutional neural networks. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 621–625. IEEE (2015)

    Google Scholar 

  7. Haindl, M., Filip, J.: Visual Texture. Advances in Computer Vision and Pattern Recognition, Springer, London (2013). https://doi.org/10.1007/978-1-4471-4902-6, https://link.springer.com/book/10.1007/978-1-4471-4902-6

  8. Haindl, M., Filip, J., Vávra, R.: Digital material appearance: the curse of tera-bytes. ERCIM News (90), 49–50 (2012). https://ercim-news.ercim.eu/en90/ri/digital-material-appearance-the-curse-of-tera-bytes

  9. Haindl, M., Mikeš, S., Kudo, M.: Unsupervised surface reflectance field multi-segmenter. In: Azzopardi, G., Petkov, N. (eds.) CAIP 2015. LNCS, vol. 9256, pp. 261–273. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23192-1_22

    Chapter  Google Scholar 

  10. Haindl, M., Vácha, P.: Wood veneer species recognition using Markovian textural features. In: Azzopardi, G., Petkov, N. (eds.) CAIP 2015. LNCS, vol. 9256, pp. 300–311. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23192-1_25

    Chapter  Google Scholar 

  11. Hapke, B.W.: A theoretical photometric function for the lunar surface. J. Geophys. Res. 68(15), 4571–4586 (1963)

    Article  Google Scholar 

  12. Lafortune, E., Foo, S., Torrance, K., Greenberg, D.: Non-linear approximation of reflectance functions. In: ACM SIGGRAPH 1997, pp. 117–126. ACM Press (1997)

    Google Scholar 

  13. Lewis, R.R.: Making shaders more physically plausible. In: Computer Graphics Forum, vol. 13, pp. 109–120. Wiley Online Library (1994)

    Google Scholar 

  14. Minnaert, M.: The reciprocity principle in lunar photometry. Astrophys. J. 93, 403–410 (1941)

    Article  Google Scholar 

  15. Nayar, S.K., Oren, M.: Visual appearance of matte surfaces. Science 267(5201), 1153–1156 (1995)

    Article  Google Scholar 

  16. Neumann, L., Neumannn, A., Szirmay-Kalos, L.: Compact metallic reflectance models. In: Computer Graphics Forum, vol. 18, pp. 161–172. Wiley Online Library (1999)

    Google Scholar 

  17. Oren, M., Nayar, S.K.: Generalization of lambert’s reflectance model. In: Proceedings of the 21st Annual Conference on Computer Graphics and Interactive Techniques, pp. 239–246 (1994)

    Google Scholar 

  18. Phong, B.T.: Illumination for computer generated pictures. Commun. ACM 18(6), 311–317 (1975)

    Article  Google Scholar 

  19. Remeš, V., Haindl, M.: Bark recognition using novel rotationally invariant multispectral textural features. Pattern Recogn. Lett. 125, 612–617 (2019)

    Article  Google Scholar 

  20. Schlick, C.: A customizable reflectance model for everyday rendering. In: Fourth Eurographics Workshop on Rendering, Paris, France, pp. 73–83 (1993)

    Google Scholar 

  21. Schlick, C.: An inexpensive BRDF model for physically-based rendering. In: Computer graphics forum, vol. 13, pp. 233–246. Wiley Online Library (1994)

    Google Scholar 

  22. Torrance, K.E., Sparrow, E.M.: Off-specular peaks in the directional distribution of reflected thermal radiation. J. Heat Transf. 6(7), 223–230 (1966)

    Article  Google Scholar 

  23. Trowbridge, T., Reitz, K.P.: Average irregularity representation of a rough surface for ray reflection. JOSA 65(5), 531–536 (1975)

    Article  Google Scholar 

  24. Varma, M., Zisserman, A.: A statistical approach to material classification using image patch exemplars. IEEE Trans. Pattern Anal. Mach. Intell. 31(11), 2032–2047 (2009). http://doi.ieeecomputersociety.org/10.1109/TPAMI.2008.182

  25. Ward, G.: Measuring and modeling anisotropic reflection. Comput. Graph. 26(2), 265–272 (1992)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michal Haindl .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Haindl, M., Havlíček, V. (2022). BRDF Anisotropy Criterion. In: Nguyen, N.T., Tran, T.K., Tukayev, U., Hong, TP., Trawiński, B., Szczerbicki, E. (eds) Intelligent Information and Database Systems. ACIIDS 2022. Lecture Notes in Computer Science(), vol 13758. Springer, Cham. https://doi.org/10.1007/978-3-031-21967-2_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-21967-2_35

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-21966-5

  • Online ISBN: 978-3-031-21967-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics