[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Predicting Compatibility of Cultivars in Grafting Processes Using Kernel Methods and Collaborative Filtering

  • Conference paper
  • First Online:
Intelligent Systems (BRACIS 2022)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13653))

Included in the following conference series:

  • 816 Accesses

Abstract

Viticulture is the cultivation and harvesting of grapes for use in the production of juices, wines and other derivatives, with great socioeconomic importance. Grafting techniques have been applied to increase productivity and quality in the sector, but the process of finding compatible cultivars is slow and costly. Although Machine Learning (ML) methods have already been applied in several applications in agriculture, their use to support grafting processes is still very scarce. This work investigates ML-based recommender systems to address the problem of scion and rootstock compatibility in grafting processes in viticulture. In the experiments, collaborative filtering algorithms and kernel-based methods were evaluated on a dataset of 251 rated interactions, reaching a F1-score of approximately \(96\%\) for the best model. The results indicated advantages of kernel-based models over standard collaborative filtering models, as well as demonstrated the feasibility of a decision support tool to guide the choice of the best cultivars for grafting.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 71.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 89.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://github.com/thiagobrs/grafting-recommender.

  2. 2.

    http://surpriselib.com/.

  3. 3.

    http://staff.cs.utu.fi/~aatapa/software/RLScore/index.html.

References

  1. Leão, P.C.S., Borges, R.M.E.: Melhoramento genético da videira. Embrapa Semiárido-Documentos (2009)

    Google Scholar 

  2. Dougherty, P.H.: The Geography of Wine Regions, Terroir and Techniques. Springer, Dordrecht (2012). https://doi.org/10.1007/978-94-007-0464-0

    Book  Google Scholar 

  3. Cantu, D., Walker, M.A.: The Grape Genome. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-18601-2

    Book  Google Scholar 

  4. FAO - Food and Agriculture Organization of the United Nations. http://www.Fao.org/faostat/en/#data/QC/visualize. Accessed 16 June 2021

  5. Soares, J.M., Leão, P.C.S.: A vitivinicultura no Semiárido Brasileiro. Embrapa Semiárido, Petrolina (2009)

    Google Scholar 

  6. Hernandes, J.L., Martins, F.P., Pedro Júnior, M.J.: Uso de porta-enxertos: Tecnologia simples e fundamental na cultura da videira. Instituto Agronômico de Campinas, Jundiaí (2011)

    Google Scholar 

  7. Serra, I., Strever, A., Myburgh, P.A., Deloire, A. : The interaction between rootstocks and cultivars (Vitis vinifera L.) to enhance drought tolerance in grapevine. Australian J. Grape Wine Res. (2014)

    Google Scholar 

  8. Mohanty, S., Chatterjee, J., Jain, S., Elngar, A., Gupta, P.: Recommender System with Machine Learning and Artificial Intelligence. Wiley-Scrivener, Hoboken (2020)

    Google Scholar 

  9. Bondre, D. A., Mahagaonkar, S.: Prediction of crop yield and fertilizer recommendation using machine learning algorithms. Int. J. Eng. Appl. Sci. Technol. (2019)

    Google Scholar 

  10. Vivek, M.V.R., Harsha, D.V.V.S.S.S., Maran, P.S.: A survey on crop recommendation using machine learning. Int. J. Recent Technol. Eng. 120–125 (2019)

    Google Scholar 

  11. Patel, K., Patel, H.B.: A state-of-the-art survey on recommendation system and prospective extensions. Comput. Electron. Agric. (2020)

    Google Scholar 

  12. Mokarrama, M.J., Arefin, M.S.: RSF: a recommendation system for farmers. In: 5th IEEE Region 10 Humanitarian Technology Conference, pp. 843–850 (2018)

    Google Scholar 

  13. Pudumalar, S., Ramanujam, E., Rajashree, R.H., Kavya, C., Kiruthika, T., Nisha, J.: Crop recommendation system for precision agriculture. In: 8th International Conference on Advanced Computing, pp. 32–36 (2017)

    Google Scholar 

  14. Lacasta, J., Lopez-Pellicer, F.J., Espejo-García, B., Nogueras-Iso, J., Zarazaga-Soria, F.J.: Agricultural recommendation system for crop protection. Comput. Electron. Agric. 82–89 (2018)

    Google Scholar 

  15. Osman, H., El-Bendary, N., Fakharany, E.E., Emam, M.E. Ontology based recommendation system for predicting cultivation and harvesting timings using support vector regression. Softw. Eng. Perspect. Intell. Syst. (2020). Advances in Intelligent Systems and Computing, vol. 1295. Springer

    Google Scholar 

  16. Saravanakumar R., et. al.: Estimating the efficiency of machine learning in forecasting harvesting time of rice. Int. J. Mod. Agric. 10(2), 1930–1937 (2021)

    Google Scholar 

  17. Jaiswal, S., Kharade, T., Kotambe, N., Shinde, S.: Collaborative recommendation system for agriculture sector. In: ITM Web of Conferences (2020)

    Google Scholar 

  18. Ricci, F., Rokach, L., Shapira, B.: Introduction to recommender systems handbook. In: Ricci, F., Rokach, L., Shapira, B., Kantor, P. (eds.) Recommender Systems Handbook, pp. 1–35. Springer, Boston (2011). https://doi.org/10.1007/978-0-387-85820-3_1

    Chapter  MATH  Google Scholar 

  19. Lemire, D., Maclachlan, A.: Slope One Predictors for Online Rating-Based Collaborative Filtering. In: Proceedings of the SIAM Data Mining Conference (2005)

    Google Scholar 

  20. Cosine Similarity. https://en.wikipedia.org/wiki/Cosine_similarity#Definition. Accessed 21 May 2022

  21. Genton, M.G.: Classes of kernels for machine learning: a statistics perspective. Journal of Mach. Learn. Res. 2 (2001)

    Google Scholar 

  22. Hofmann, T., Scholkopf, B., Smola, A.J.: Kernel methods in machine learning. Inst. Math. Stat. Ann. Stat. 36(3), 1171–1220 (2008)

    MathSciNet  MATH  Google Scholar 

  23. Devijver, P.A., Kittler, J.: Pattern Recognition: A Statistical Approach. Prentice-Hall, London (1982). ISBN 0-13-654236-0

    Google Scholar 

  24. Airola, A., Pahikkala, T.: Fast Kronecker product kernel methods via generalized vec trick. IEEE Trans. Neural Netw. Learn. Syst. 29(8), 3374–3387 (2018)

    Google Scholar 

  25. Powers, D.M.W.: Evaluation: from precision, recall and F-measure to ROC, informedness, markedness & correlation. J. Mach. Learn. Technol. 2(1), 37–63 (2011)

    MathSciNet  Google Scholar 

  26. Fawcett, T.: An introduction to ROC analysis. Pattern Recogn. Lett. 27(8), 861–874 (2006)

    Article  MathSciNet  Google Scholar 

  27. Brownlee, J.: Imbalanced classification with python: better metrics, balance skewed classes, cost-sensitive learning. Mach. Learn. Mastery, 248–258 (2020)

    Google Scholar 

  28. Genton, M.G.: Classes of kernels for machine learning: a statistics perspective. J. Mach. Learn. Res. 2, 299–312 (2001)

    MathSciNet  MATH  Google Scholar 

  29. Verslype, N.I.: Avaliação e seleção de porta-enxertos de videira (Vitis spp.) tolerantes ao déficit hídrico através de aprendizagem de máquina. 2021, p. 140, UFRPE (2021)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thiago B. R. Silva .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Silva, T.B.R., Verslype, N.I., Nascimento, A.C.A., Prudêncio, R.B.C. (2022). Predicting Compatibility of Cultivars in Grafting Processes Using Kernel Methods and Collaborative Filtering. In: Xavier-Junior, J.C., Rios, R.A. (eds) Intelligent Systems. BRACIS 2022. Lecture Notes in Computer Science(), vol 13653. Springer, Cham. https://doi.org/10.1007/978-3-031-21686-2_42

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-21686-2_42

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-21685-5

  • Online ISBN: 978-3-031-21686-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics