Abstract
Viticulture is the cultivation and harvesting of grapes for use in the production of juices, wines and other derivatives, with great socioeconomic importance. Grafting techniques have been applied to increase productivity and quality in the sector, but the process of finding compatible cultivars is slow and costly. Although Machine Learning (ML) methods have already been applied in several applications in agriculture, their use to support grafting processes is still very scarce. This work investigates ML-based recommender systems to address the problem of scion and rootstock compatibility in grafting processes in viticulture. In the experiments, collaborative filtering algorithms and kernel-based methods were evaluated on a dataset of 251 rated interactions, reaching a F1-score of approximately \(96\%\) for the best model. The results indicated advantages of kernel-based models over standard collaborative filtering models, as well as demonstrated the feasibility of a decision support tool to guide the choice of the best cultivars for grafting.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Leão, P.C.S., Borges, R.M.E.: Melhoramento genético da videira. Embrapa Semiárido-Documentos (2009)
Dougherty, P.H.: The Geography of Wine Regions, Terroir and Techniques. Springer, Dordrecht (2012). https://doi.org/10.1007/978-94-007-0464-0
Cantu, D., Walker, M.A.: The Grape Genome. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-18601-2
FAO - Food and Agriculture Organization of the United Nations. http://www.Fao.org/faostat/en/#data/QC/visualize. Accessed 16 June 2021
Soares, J.M., Leão, P.C.S.: A vitivinicultura no Semiárido Brasileiro. Embrapa Semiárido, Petrolina (2009)
Hernandes, J.L., Martins, F.P., Pedro Júnior, M.J.: Uso de porta-enxertos: Tecnologia simples e fundamental na cultura da videira. Instituto Agronômico de Campinas, Jundiaí (2011)
Serra, I., Strever, A., Myburgh, P.A., Deloire, A. : The interaction between rootstocks and cultivars (Vitis vinifera L.) to enhance drought tolerance in grapevine. Australian J. Grape Wine Res. (2014)
Mohanty, S., Chatterjee, J., Jain, S., Elngar, A., Gupta, P.: Recommender System with Machine Learning and Artificial Intelligence. Wiley-Scrivener, Hoboken (2020)
Bondre, D. A., Mahagaonkar, S.: Prediction of crop yield and fertilizer recommendation using machine learning algorithms. Int. J. Eng. Appl. Sci. Technol. (2019)
Vivek, M.V.R., Harsha, D.V.V.S.S.S., Maran, P.S.: A survey on crop recommendation using machine learning. Int. J. Recent Technol. Eng. 120–125 (2019)
Patel, K., Patel, H.B.: A state-of-the-art survey on recommendation system and prospective extensions. Comput. Electron. Agric. (2020)
Mokarrama, M.J., Arefin, M.S.: RSF: a recommendation system for farmers. In: 5th IEEE Region 10 Humanitarian Technology Conference, pp. 843–850 (2018)
Pudumalar, S., Ramanujam, E., Rajashree, R.H., Kavya, C., Kiruthika, T., Nisha, J.: Crop recommendation system for precision agriculture. In: 8th International Conference on Advanced Computing, pp. 32–36 (2017)
Lacasta, J., Lopez-Pellicer, F.J., Espejo-García, B., Nogueras-Iso, J., Zarazaga-Soria, F.J.: Agricultural recommendation system for crop protection. Comput. Electron. Agric. 82–89 (2018)
Osman, H., El-Bendary, N., Fakharany, E.E., Emam, M.E. Ontology based recommendation system for predicting cultivation and harvesting timings using support vector regression. Softw. Eng. Perspect. Intell. Syst. (2020). Advances in Intelligent Systems and Computing, vol. 1295. Springer
Saravanakumar R., et. al.: Estimating the efficiency of machine learning in forecasting harvesting time of rice. Int. J. Mod. Agric. 10(2), 1930–1937 (2021)
Jaiswal, S., Kharade, T., Kotambe, N., Shinde, S.: Collaborative recommendation system for agriculture sector. In: ITM Web of Conferences (2020)
Ricci, F., Rokach, L., Shapira, B.: Introduction to recommender systems handbook. In: Ricci, F., Rokach, L., Shapira, B., Kantor, P. (eds.) Recommender Systems Handbook, pp. 1–35. Springer, Boston (2011). https://doi.org/10.1007/978-0-387-85820-3_1
Lemire, D., Maclachlan, A.: Slope One Predictors for Online Rating-Based Collaborative Filtering. In: Proceedings of the SIAM Data Mining Conference (2005)
Cosine Similarity. https://en.wikipedia.org/wiki/Cosine_similarity#Definition. Accessed 21 May 2022
Genton, M.G.: Classes of kernels for machine learning: a statistics perspective. Journal of Mach. Learn. Res. 2 (2001)
Hofmann, T., Scholkopf, B., Smola, A.J.: Kernel methods in machine learning. Inst. Math. Stat. Ann. Stat. 36(3), 1171–1220 (2008)
Devijver, P.A., Kittler, J.: Pattern Recognition: A Statistical Approach. Prentice-Hall, London (1982). ISBN 0-13-654236-0
Airola, A., Pahikkala, T.: Fast Kronecker product kernel methods via generalized vec trick. IEEE Trans. Neural Netw. Learn. Syst. 29(8), 3374–3387 (2018)
Powers, D.M.W.: Evaluation: from precision, recall and F-measure to ROC, informedness, markedness & correlation. J. Mach. Learn. Technol. 2(1), 37–63 (2011)
Fawcett, T.: An introduction to ROC analysis. Pattern Recogn. Lett. 27(8), 861–874 (2006)
Brownlee, J.: Imbalanced classification with python: better metrics, balance skewed classes, cost-sensitive learning. Mach. Learn. Mastery, 248–258 (2020)
Genton, M.G.: Classes of kernels for machine learning: a statistics perspective. J. Mach. Learn. Res. 2, 299–312 (2001)
Verslype, N.I.: Avaliação e seleção de porta-enxertos de videira (Vitis spp.) tolerantes ao déficit hídrico através de aprendizagem de máquina. 2021, p. 140, UFRPE (2021)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Silva, T.B.R., Verslype, N.I., Nascimento, A.C.A., Prudêncio, R.B.C. (2022). Predicting Compatibility of Cultivars in Grafting Processes Using Kernel Methods and Collaborative Filtering. In: Xavier-Junior, J.C., Rios, R.A. (eds) Intelligent Systems. BRACIS 2022. Lecture Notes in Computer Science(), vol 13653. Springer, Cham. https://doi.org/10.1007/978-3-031-21686-2_42
Download citation
DOI: https://doi.org/10.1007/978-3-031-21686-2_42
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-21685-5
Online ISBN: 978-3-031-21686-2
eBook Packages: Computer ScienceComputer Science (R0)