[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

The Use of Multiple Criteria Decision Aiding Methods in Recommender Systems: A Literature Review

  • Conference paper
  • First Online:
Intelligent Systems (BRACIS 2022)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13653))

Included in the following conference series:

Abstract

Multiple Criteria Decision Making (MCDA) methods have been increasingly applied to improve recommendations when multiple criteria are considered in Recommender Systems (RSs). This study presents the preliminary results of a systematic literature review, following Kitchenham’s guidelines, regarding the application of MCDA methods in RSs over the last two decades. Based on our findings, MCDA methods can be applied in two RS phases: the preference elicitation and the recommendation phases. In the former, RSs usually have a strong interaction with the user, which results in more personalized recommendations, ensuring higher user satisfaction and contributing to address the cold-start challenge in RSs. Regarding the recommendation phase, while most RSs are based on ranking approaches, there is a trend to apply sorting methods in order to avoid an additional step involving a filtering application that selects a subset of alternatives. Future research could focus on applying preference learning combined with MCDA methods for exploring improvements in prediction and recommendation phases, and also in quality and processing time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 71.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 89.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abbas, A., Bilal, K., Zhang, L., Khan, S.: A cloud based health insurance plan recommendation system: a user centered approach. Futur. Gener. Comput. Syst. 43–44, 99–109 (2015)

    Article  Google Scholar 

  2. Adomavicius, G., Kwon, Y.: New recommendation techniques for multicriteria rating systems. IEEE Intell. Syst. 22(3), 48–55 (2007)

    Article  Google Scholar 

  3. Adomavicius, G., Manouselis, N., Kwon, Y.O.: Multi-criteria recommender systems. In: Ricci, F., Rokach, L., Shapira, B., Kantor, P.B. (eds.) Recommender Systems Handbook, pp. 769–803. Springer, Boston, MA (2011). https://doi.org/10.1007/978-0-387-85820-3_24

    Chapter  Google Scholar 

  4. Adomavicius, G., Tuzhilin, A.: Toward the next generation of recommender systems: a survey of the state-of-the-art and possible extensions. IEEE Trans. Knowl. Data Eng. 17(6), 734–749 (2005). https://doi.org/10.1109/TKDE.2005.99

    Article  Google Scholar 

  5. Aggarwal, C.C.: Recommender Systems. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-29659-3

    Book  Google Scholar 

  6. Al-Bashiri, H., Abdulgabber, M., Romli, A., Kahtan, H.: An improved memory-based collaborative filtering method based on the TOPSIS technique. PLoS ONE 13(10), e0204434 (2018)

    Article  Google Scholar 

  7. Angskun, T., Angskun, J.: A qualitative attraction ranking model for personalized recommendations. J. Hosp. Tour. Technol. 9, 2648352 (2018)

    Google Scholar 

  8. Anselmo Alvarez, P., Ishizaka, A., Martínez, L.: Multiple-criteria decision-making sorting methods: a survey. Expert Syst. Appl. 183, 115368 (2021). https://doi.org/10.1016/j.eswa.2021.115368

    Article  Google Scholar 

  9. Arentze, T., Kemperman, A., Aksenov, P.: Estimating a latent-class user model for travel recommender systems. Inf. Technol. Tour. 19(1–4), 61–82 (2018)

    Article  Google Scholar 

  10. Arif, Y., Harini, S., Nugroho, S., Hariadi, M.: An automatic scenario control in serious game to visualize tourism destinations recommendation. IEEE Access 9, 89941–89957 (2021)

    Article  Google Scholar 

  11. Baczkiewicz, A., Kizielewicz, B., Shekhovtsov, A., Watróbski, J., Sałabun, W.: Methodical aspects of MCDM based E-commerce recommender system. J. Theor. Appl. Electron. Commer. Res. 16(6), 2192–2229 (2021)

    Article  Google Scholar 

  12. Behzadian, M., Kazemzadeh, R., Albadvi, A., Aghdasi, M.: PROMETHEE: a comprehensive literature review on methodologies and applications. Eur. J. Oper. Res. 200(1), 198–215 (2010)

    Article  MATH  Google Scholar 

  13. Brans, J., Vincke, P., Mareschal, B.: How to select and how to rank projects: the PROMETHEE method. Eur. J. Oper. Res. 24(2), 228–238 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  14. Burke, R.: Hybrid recommender systems: survey and experiments. User Model. User-Adapt. Interact. 12(4), 331–370 (2002). https://doi.org/10.1023/A:1021240730564

    Article  MATH  Google Scholar 

  15. Chai, Z., Li, Y., Zhu, S.: P-MOIA-RS: a multi-objective optimization and decision-making algorithm for recommendation systems. J. Ambient. Intell. Humaniz. Comput. 12(1), 443–454 (2021). https://doi.org/10.1007/s12652-020-01997-x

    Article  Google Scholar 

  16. Chaimae Lamaakchaoui, A.A., Jarroudi, M.E.: The AHP method for the evaluation and selection of complementary products. Int. J. Serv. Sci. Manag. Eng. Technol. 9(3), 96695–96711 (2018)

    Google Scholar 

  17. Chen, D.N., Hu, P.H., Kuo, Y.R., Liang, T.P.: A web-based personalized recommendation system for mobile phone selection: design, implementation, and evaluation. Expert Syst. Appl. 37(12), 8201–8210 (2010)

    Article  Google Scholar 

  18. Choquet, G.: Theory of capacities. Ann. Inst. Fourier 5, 131–295 (1954)

    Article  MathSciNet  MATH  Google Scholar 

  19. Cinelli, M., Kadziński, M., Miebs, G., Gonzalez, M., Słowiński, R.: Recommending multiple criteria decision analysis methods with a new taxonomy-based decision support system. Eur. J. Oper. Res. 302(2), 633–651 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  20. Del Vasto-Terrientes, L., Valls, A., Zielniewicz, P., Borràs, J.: Erratum to: A hierarchical multi-criteria sorting approach for recommender systems. J. Intell. Inf. Syst. 46(2), 347–348 (2016)

    Article  Google Scholar 

  21. Devaud, J., Groussaud, G., Jacquet-Lagrèze, E.: UTADIS: Une méthode de construction de fonctions d’utilité additives rendant compte de jugements globaux. European Working Group on Multicriteria Decision Aid (1980)

    Google Scholar 

  22. Dewi, R., Ananta, M., Fanani, L., Brata, K., Priandani, N.: The development of mobile culinary recommendation system based on group decision support system. Int. J. Interact. Mob. Technol. 12(3), 209–216 (2018)

    Article  Google Scholar 

  23. Dixit, V.S., Mehta, H., Bedi, P.: A proposed framework for group-based multi-criteria recommendations. Appl. Artif. Intell. 28(10), 917–956 (2014)

    Article  Google Scholar 

  24. Ebrahimi, F., Asemi, A., Nezarat, A., Ko, A.: Developing a mathematical model of the co-author recommender system using graph mining techniques and big data applications. J. Big Data 8(1), 1–15 (2021)

    Article  Google Scholar 

  25. Edwards, W., Barron, F.: Smarts and smarter: improved simple methods for multiattribute utility measurement. Organ. Behav. Hum. Decis. Process. 60(3), 306–325 (1994)

    Article  Google Scholar 

  26. Effendy, F., Kartono, K., Herawatie, D.: Mobile apps for boarding house recommendation. Int. J. Interact. Mob. Technol. 14(11), 32–47 (2020)

    Article  Google Scholar 

  27. Effendy, F., Nuqoba, B.: Taufik: culinary recommendation application based on user preferences using fuzzy topsis. IIUM Eng. J. 20(2), 163–175 (2019)

    Article  Google Scholar 

  28. Fishburn, P.C.: Additive utilities with incomplete product sets: application to priorities and assignments. Oper. Res. 15(3), 537–542 (1967)

    Article  Google Scholar 

  29. Fomba, S., Zarate, P., Kilgour, M., Camilleri, G., Konate, J., Tangara, F.: A recommender system based on multi-criteria aggregation. Int. J. Decis. Support Syst. Technol. 9(4), 1–15 (2017)

    Article  Google Scholar 

  30. Forouzandeh, S., Berahmand, K., Nasiri, E., Rostami, M.: A hotel recommender system for tourists using the artificial bee colony algorithm and fuzzy TOPSIS model: a case study of tripadvisor. Int. J. Inf. Technol. Decis. Mak. 20(1), 399–429 (2021)

    Article  Google Scholar 

  31. Forouzandeh, S., Rostami, M., Berahmand, K.: A hybrid method for recommendation systems based on tourism with an evolutionary algorithm and TOPSIS model. Fuzzy Inf. Eng. 14(1), 26–50 (2022)

    Article  Google Scholar 

  32. Fürnkranz, J., Hüllermeier, E.: Preference learning (2011)

    Google Scholar 

  33. Govindan, K., Jepsen, M.B.: ELECTRE: a comprehensive literature review on methodologies and applications. Eur. J. Oper. Res. 250(1), 1–29 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  34. Guo, Z., Tang, C., Tang, H., Fu, Y., Niu, W.: A novel group recommendation mechanism from the perspective of preference distribution. IEEE Access 6, 5865–5878 (2018)

    Article  Google Scholar 

  35. Gupta, S., Kant, V.: Credibility score based multi-criteria recommender system. Knowl.-Based Syst. 196, 105756 (2020)

    Article  Google Scholar 

  36. Hong, Y., Zeng, X., Bruniaux, P., Chen, Y., Zhang, X.: Development of a new knowledge-based fabric recommendation system by integrating the collaborative design process and multi-criteria decision support. Text. Res. J. 88(23), 2682–2698 (2018)

    Article  Google Scholar 

  37. Hu, Y.C.: A multicriteria collaborative filtering approach using the indifference relation and its application to initiator recommendation for group-buying. Appl. Artif. Intell. 28(10), 992–1008 (2014)

    Article  Google Scholar 

  38. Hu, Y.C.: Nonadditive similarity-based single-layer perceptron for multi-criteria collaborative filtering. Neurocomputing 129, 306–314 (2014)

    Article  Google Scholar 

  39. Hu, Y.C.: A novel nonadditive collaborative-filtering approach using multicriteria ratings. Math. Probl. Eng. 2013 (2013)

    Google Scholar 

  40. Huang, S.L.: Designing utility-based recommender systems for e-commerce: evaluation of preference-elicitation methods. Electron. Commer. Res. Appl. 10(4), 398–407 (2011)

    Article  Google Scholar 

  41. Huang, Y., Wang, N.N., Zhang, H., Wang, J.: A novel product recommendation model consolidating price, trust and online reviews. Kybernetes 48(6), 1355–1372 (2019)

    Article  Google Scholar 

  42. Huang, Y., Bian, L.: A Bayesian network and analytic hierarchy process based personalized recommendations for tourist attractions over the internet. Expert Syst. Appl. 36(1), 933–943 (2009)

    Article  Google Scholar 

  43. Iijima, J., Ho, S.: Common structure and properties of filtering systems. Electron. Commer. Res. Appl. 6(2), 139–145 (2007)

    Article  Google Scholar 

  44. Ishizaka, A., Nemery, P., Pearman, C.: AHPSort: an AHP based method for sorting problems. Int. J. Prod. Res. 50(17), 4767–4784 (2012)

    Article  Google Scholar 

  45. Ke, C.K., Chang, C.M.: Optimizing target selection complexity of a recommendation system by skyline query and multi-criteria decision analysis. J. Supercomput. 76(8), 6453–6474 (2020)

    Article  Google Scholar 

  46. Kitchenham, B., Charters, S.: Guidelines for performing systematic literature reviews in software engineering (2007)

    Google Scholar 

  47. Lakiotaki, K., Matsatsinis, N.F., Tsoukiàs, A.: Multicriteria user modeling in recommender systems. IEEE Intell. Syst. 26(2), 64–76 (2011)

    Article  Google Scholar 

  48. Lee, S.K., Cho, Y.H., Kim, S.H.: Collaborative filtering with ordinal scale-based implicit ratings for mobile music recommendations. Inf. Sci. 180(11), 2142–2155 (2010)

    Article  Google Scholar 

  49. Li, S., Pham, T., Chuang, H., Wang, Z.W.: Does reliable information matter? Towards a trustworthy co-created recommendation model by mining unboxing reviews. Inf. Syst. e-Bus. Manag. 14(1), 71–99 (2016). https://doi.org/10.1007/s10257-015-0275-6

    Article  Google Scholar 

  50. Liu, D.R., Shih, Y.Y.: Integrating AHP and data mining for product recommendation based on customer lifetime value. Inf. Manag. 42(3), 387–400 (2005)

    Article  Google Scholar 

  51. Mahajan, P., Kaur, P.D.: Three-tier IoT-edge-cloud (3T-IEC) architectural paradigm for real-time event recommendation in event-based social networks. J. Ambient. Intell. Humaniz. Comput. 12(1), 1363–1386 (2020). https://doi.org/10.1007/s12652-020-02202-9

    Article  Google Scholar 

  52. Manouselis, N.: Deploying and evaluating multiattribute product recommendation in e-markets. Int. J. Manag. Decis. Mak. 9(1), 43–61 (2008)

    Google Scholar 

  53. Manouselis, N., Costopoulou, C.: Analysis and classification of multi-criteria recommender systems. World Wide Web 10(4), 415–441 (2007)

    Article  Google Scholar 

  54. Manouselis, N., Costopoulou, C.: marService: multiattribute utility recommendation for e-markets. Int. J. Comput. Appl. Technol. 33(2–3), 176–189 (2008)

    Article  Google Scholar 

  55. Nemery, P., Lamboray, C.: Flow sort: a flow-based sorting method with limiting or central profiles. TOP 16(1), 90–113 (2008). https://doi.org/10.1007/s11750-007-0036-x

    Article  MathSciNet  MATH  Google Scholar 

  56. Olugbara, O.O., Ojo, S.O., Mphahlele, M.I.: Exploiting image content in location-based shopping recommender systems for mobile users. Int. J. Inf. Technol. Decis. Mak. 09(05), 759–778 (2010)

    Article  MATH  Google Scholar 

  57. Opricovic, S., Tzeng, G.H.: Compromise solution by MCDM methods: a comparative analysis of VIKOR and TOPSIS. Eur. J. Oper. Res. 156(2), 445–455 (2004)

    Article  MATH  Google Scholar 

  58. Park, H.S., Park, M.H., Cho, S.B.: Mobile information recommendation using multi-criteria decision making with Bayesian network. Int. J. Inf. Technol. Decis. Mak. 14(2), 317–338 (2015)

    Article  Google Scholar 

  59. Pinandito, A., Ananta, M., Brata, K., Fanani, L.: Alternatives weighting in analytic hierarchy process of mobile culinary recommendation system using fuzzy. ARPN J. Eng. Appl. Sci. 10(19), 8791–8798 (2015)

    Google Scholar 

  60. Qin, Y., Wang, X., Xu, Z.: Ranking tourist attractions through online reviews: a novel method with intuitionistic and hesitant fuzzy information based on sentiment analysis. Int. J. Fuzzy Syst. 24(2), 755–777 (2022)

    Article  Google Scholar 

  61. Rizvi, S., Zehra, S., Olariu, S.: ASPIRE: an agent-oriented smart parking recommendation system for smart cities. IEEE Intell. Transp. Syst. Mag. 11(4), 48–61 (2019)

    Article  Google Scholar 

  62. Roy, B.: Electre iii: Un algorithme de classements fondé sur une représentation floue des préférences en présence de critères multiples. Cahiers du Centre d’Etudes de Recherche Opérationnelle 20(1), 3–24 (1978)

    MathSciNet  MATH  Google Scholar 

  63. Roy, B.: Multicriteria Methodology Goes Decision Aiding, 1st edn. Kluwer Academic Publishers, The Netherlands (1996)

    Book  Google Scholar 

  64. Roy, B., Bouyssou, D.: Aide multicritère à la décision: méthodes et cas, 1st edn. Econômica, Paris (1993)

    MATH  Google Scholar 

  65. Saaty, R.: The analytic hierarchy process—what it is and how it is used. Math. Model. 9(3), 161–176 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  66. Saaty, T.L.: Decision Making with Dependence and Feedback: The Analytic Network Process, vol. 4922. RWS publications, Pittsburgh (1996)

    Google Scholar 

  67. Sabokbar, H., Hosseini, A., Banaitis, A., Banaitiene, N.: A novel sorting method TOPSIS-SORT: an application for Tehran environmental quality evaluation. E a M: Econ. Manag. 19(2), 87–104 (2016)

    Google Scholar 

  68. Serrano-Guerrero, J., Bani-Doumi, M., Romero, F., Olivas, J.: A fuzzy aspect-based approach for recommending hospitals. Int. J. Intell. Syst. 37(4), 2885–2910 (2022)

    Article  Google Scholar 

  69. Showafah, M., Sihwi, S.: Winarno: Ontology-based daily menu recommendation system for complementary food according to nutritional needs using naïve bayes and topsis. Int. J. Adv. Comput. Sci. Appl. 12(11), 638–645 (2021)

    Google Scholar 

  70. Tian, Y., Wang, W., Gong, X., Que, X., Ma, J.: An enhanced personal photo recommendation system by fusing contextual and textual features on mobile device. IEEE Trans. Consum. Electron. 59(1), 220–228 (2013)

    Article  Google Scholar 

  71. Troussas, C., Krouska, A., Sgouropoulou, C.: Enhancing human-computer interaction in digital repositories through a MCDA-based recommender system. Adv. Hum.-Comput. Interact. 2021 (2021)

    Google Scholar 

  72. Vasto-Terrientes, L., Valls, A., Zielniewicz, P., Borràs, J.: A hierarchical multi-criteria sorting approach for recommender systems. J. Intell. Inf. Syst. 46(2), 313–346 (2016)

    Article  Google Scholar 

  73. Verma, P., Sood, S., Kalra, S.: Student career path recommendation in engineering stream based on three-dimensional model. Comput. Appl. Eng. Educ. 25(4), 578–593 (2017)

    Article  Google Scholar 

  74. Wang, N.: Ideological and political education recommendation system based on AHP and improved collaborative filtering algorithm. Sci. Program. 2021, 2648352 (2021)

    Google Scholar 

  75. Wang, L., Zhang, R., Ruan, H.: A personalized recommendation model in E commerce based on TOPSIS algorithm. J. Electron. Commer. Organ. 12(2), 89–100 (2014)

    Article  Google Scholar 

  76. Yang, L., Yeung, K., Ndzi, D.: A proactive personalised mobile recommendation system using analytic hierarchy process and Bayesian network. J. Internet Serv. Appl. 3(2), 195–214 (2012)

    Article  Google Scholar 

  77. Yera Toledo, R., Alzahrani, A.A., Martínez, L.: A food recommender system considering nutritional information and user preferences. IEEE Access 7, 96695–96711 (2019)

    Article  Google Scholar 

  78. Yu, W.: Aide multicritére à la décision dans le cadre de la problématique du tri: Concepts, méthodes et applications. PhD dissertation, Université Paris-Dauphine (1992)

    Google Scholar 

  79. Zavadskas, E.K., Kaklauskas, A., Sarka, V.: The new method of multicriteria complex proportional assessment of projects. Technol. Econ. Dev. Econ. 1, 131–139 (1994)

    Google Scholar 

Download references

Acknowledgment

This work was supported by the São Paulo Research Foundation (FAPESP), grants #2018/23447 and #2020/01089-9, and the Brazilian National Council for Scientific and Technological Development (CNPq). This project is also part of the Brazilian Institute of Data Science, grant #2020/09838-0, São Paulo Research Foundation (FAPESP).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renata Pelissari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pelissari, R., Alencar, P.S., Amor, S.B., Duarte, L.T. (2022). The Use of Multiple Criteria Decision Aiding Methods in Recommender Systems: A Literature Review. In: Xavier-Junior, J.C., Rios, R.A. (eds) Intelligent Systems. BRACIS 2022. Lecture Notes in Computer Science(), vol 13653. Springer, Cham. https://doi.org/10.1007/978-3-031-21686-2_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-21686-2_37

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-21685-5

  • Online ISBN: 978-3-031-21686-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics