Abstract
Multiple Criteria Decision Making (MCDA) methods have been increasingly applied to improve recommendations when multiple criteria are considered in Recommender Systems (RSs). This study presents the preliminary results of a systematic literature review, following Kitchenham’s guidelines, regarding the application of MCDA methods in RSs over the last two decades. Based on our findings, MCDA methods can be applied in two RS phases: the preference elicitation and the recommendation phases. In the former, RSs usually have a strong interaction with the user, which results in more personalized recommendations, ensuring higher user satisfaction and contributing to address the cold-start challenge in RSs. Regarding the recommendation phase, while most RSs are based on ranking approaches, there is a trend to apply sorting methods in order to avoid an additional step involving a filtering application that selects a subset of alternatives. Future research could focus on applying preference learning combined with MCDA methods for exploring improvements in prediction and recommendation phases, and also in quality and processing time.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Abbas, A., Bilal, K., Zhang, L., Khan, S.: A cloud based health insurance plan recommendation system: a user centered approach. Futur. Gener. Comput. Syst. 43–44, 99–109 (2015)
Adomavicius, G., Kwon, Y.: New recommendation techniques for multicriteria rating systems. IEEE Intell. Syst. 22(3), 48–55 (2007)
Adomavicius, G., Manouselis, N., Kwon, Y.O.: Multi-criteria recommender systems. In: Ricci, F., Rokach, L., Shapira, B., Kantor, P.B. (eds.) Recommender Systems Handbook, pp. 769–803. Springer, Boston, MA (2011). https://doi.org/10.1007/978-0-387-85820-3_24
Adomavicius, G., Tuzhilin, A.: Toward the next generation of recommender systems: a survey of the state-of-the-art and possible extensions. IEEE Trans. Knowl. Data Eng. 17(6), 734–749 (2005). https://doi.org/10.1109/TKDE.2005.99
Aggarwal, C.C.: Recommender Systems. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-29659-3
Al-Bashiri, H., Abdulgabber, M., Romli, A., Kahtan, H.: An improved memory-based collaborative filtering method based on the TOPSIS technique. PLoS ONE 13(10), e0204434 (2018)
Angskun, T., Angskun, J.: A qualitative attraction ranking model for personalized recommendations. J. Hosp. Tour. Technol. 9, 2648352 (2018)
Anselmo Alvarez, P., Ishizaka, A., Martínez, L.: Multiple-criteria decision-making sorting methods: a survey. Expert Syst. Appl. 183, 115368 (2021). https://doi.org/10.1016/j.eswa.2021.115368
Arentze, T., Kemperman, A., Aksenov, P.: Estimating a latent-class user model for travel recommender systems. Inf. Technol. Tour. 19(1–4), 61–82 (2018)
Arif, Y., Harini, S., Nugroho, S., Hariadi, M.: An automatic scenario control in serious game to visualize tourism destinations recommendation. IEEE Access 9, 89941–89957 (2021)
Baczkiewicz, A., Kizielewicz, B., Shekhovtsov, A., Watróbski, J., Sałabun, W.: Methodical aspects of MCDM based E-commerce recommender system. J. Theor. Appl. Electron. Commer. Res. 16(6), 2192–2229 (2021)
Behzadian, M., Kazemzadeh, R., Albadvi, A., Aghdasi, M.: PROMETHEE: a comprehensive literature review on methodologies and applications. Eur. J. Oper. Res. 200(1), 198–215 (2010)
Brans, J., Vincke, P., Mareschal, B.: How to select and how to rank projects: the PROMETHEE method. Eur. J. Oper. Res. 24(2), 228–238 (1986)
Burke, R.: Hybrid recommender systems: survey and experiments. User Model. User-Adapt. Interact. 12(4), 331–370 (2002). https://doi.org/10.1023/A:1021240730564
Chai, Z., Li, Y., Zhu, S.: P-MOIA-RS: a multi-objective optimization and decision-making algorithm for recommendation systems. J. Ambient. Intell. Humaniz. Comput. 12(1), 443–454 (2021). https://doi.org/10.1007/s12652-020-01997-x
Chaimae Lamaakchaoui, A.A., Jarroudi, M.E.: The AHP method for the evaluation and selection of complementary products. Int. J. Serv. Sci. Manag. Eng. Technol. 9(3), 96695–96711 (2018)
Chen, D.N., Hu, P.H., Kuo, Y.R., Liang, T.P.: A web-based personalized recommendation system for mobile phone selection: design, implementation, and evaluation. Expert Syst. Appl. 37(12), 8201–8210 (2010)
Choquet, G.: Theory of capacities. Ann. Inst. Fourier 5, 131–295 (1954)
Cinelli, M., Kadziński, M., Miebs, G., Gonzalez, M., Słowiński, R.: Recommending multiple criteria decision analysis methods with a new taxonomy-based decision support system. Eur. J. Oper. Res. 302(2), 633–651 (2022)
Del Vasto-Terrientes, L., Valls, A., Zielniewicz, P., Borràs, J.: Erratum to: A hierarchical multi-criteria sorting approach for recommender systems. J. Intell. Inf. Syst. 46(2), 347–348 (2016)
Devaud, J., Groussaud, G., Jacquet-Lagrèze, E.: UTADIS: Une méthode de construction de fonctions d’utilité additives rendant compte de jugements globaux. European Working Group on Multicriteria Decision Aid (1980)
Dewi, R., Ananta, M., Fanani, L., Brata, K., Priandani, N.: The development of mobile culinary recommendation system based on group decision support system. Int. J. Interact. Mob. Technol. 12(3), 209–216 (2018)
Dixit, V.S., Mehta, H., Bedi, P.: A proposed framework for group-based multi-criteria recommendations. Appl. Artif. Intell. 28(10), 917–956 (2014)
Ebrahimi, F., Asemi, A., Nezarat, A., Ko, A.: Developing a mathematical model of the co-author recommender system using graph mining techniques and big data applications. J. Big Data 8(1), 1–15 (2021)
Edwards, W., Barron, F.: Smarts and smarter: improved simple methods for multiattribute utility measurement. Organ. Behav. Hum. Decis. Process. 60(3), 306–325 (1994)
Effendy, F., Kartono, K., Herawatie, D.: Mobile apps for boarding house recommendation. Int. J. Interact. Mob. Technol. 14(11), 32–47 (2020)
Effendy, F., Nuqoba, B.: Taufik: culinary recommendation application based on user preferences using fuzzy topsis. IIUM Eng. J. 20(2), 163–175 (2019)
Fishburn, P.C.: Additive utilities with incomplete product sets: application to priorities and assignments. Oper. Res. 15(3), 537–542 (1967)
Fomba, S., Zarate, P., Kilgour, M., Camilleri, G., Konate, J., Tangara, F.: A recommender system based on multi-criteria aggregation. Int. J. Decis. Support Syst. Technol. 9(4), 1–15 (2017)
Forouzandeh, S., Berahmand, K., Nasiri, E., Rostami, M.: A hotel recommender system for tourists using the artificial bee colony algorithm and fuzzy TOPSIS model: a case study of tripadvisor. Int. J. Inf. Technol. Decis. Mak. 20(1), 399–429 (2021)
Forouzandeh, S., Rostami, M., Berahmand, K.: A hybrid method for recommendation systems based on tourism with an evolutionary algorithm and TOPSIS model. Fuzzy Inf. Eng. 14(1), 26–50 (2022)
Fürnkranz, J., Hüllermeier, E.: Preference learning (2011)
Govindan, K., Jepsen, M.B.: ELECTRE: a comprehensive literature review on methodologies and applications. Eur. J. Oper. Res. 250(1), 1–29 (2016)
Guo, Z., Tang, C., Tang, H., Fu, Y., Niu, W.: A novel group recommendation mechanism from the perspective of preference distribution. IEEE Access 6, 5865–5878 (2018)
Gupta, S., Kant, V.: Credibility score based multi-criteria recommender system. Knowl.-Based Syst. 196, 105756 (2020)
Hong, Y., Zeng, X., Bruniaux, P., Chen, Y., Zhang, X.: Development of a new knowledge-based fabric recommendation system by integrating the collaborative design process and multi-criteria decision support. Text. Res. J. 88(23), 2682–2698 (2018)
Hu, Y.C.: A multicriteria collaborative filtering approach using the indifference relation and its application to initiator recommendation for group-buying. Appl. Artif. Intell. 28(10), 992–1008 (2014)
Hu, Y.C.: Nonadditive similarity-based single-layer perceptron for multi-criteria collaborative filtering. Neurocomputing 129, 306–314 (2014)
Hu, Y.C.: A novel nonadditive collaborative-filtering approach using multicriteria ratings. Math. Probl. Eng. 2013 (2013)
Huang, S.L.: Designing utility-based recommender systems for e-commerce: evaluation of preference-elicitation methods. Electron. Commer. Res. Appl. 10(4), 398–407 (2011)
Huang, Y., Wang, N.N., Zhang, H., Wang, J.: A novel product recommendation model consolidating price, trust and online reviews. Kybernetes 48(6), 1355–1372 (2019)
Huang, Y., Bian, L.: A Bayesian network and analytic hierarchy process based personalized recommendations for tourist attractions over the internet. Expert Syst. Appl. 36(1), 933–943 (2009)
Iijima, J., Ho, S.: Common structure and properties of filtering systems. Electron. Commer. Res. Appl. 6(2), 139–145 (2007)
Ishizaka, A., Nemery, P., Pearman, C.: AHPSort: an AHP based method for sorting problems. Int. J. Prod. Res. 50(17), 4767–4784 (2012)
Ke, C.K., Chang, C.M.: Optimizing target selection complexity of a recommendation system by skyline query and multi-criteria decision analysis. J. Supercomput. 76(8), 6453–6474 (2020)
Kitchenham, B., Charters, S.: Guidelines for performing systematic literature reviews in software engineering (2007)
Lakiotaki, K., Matsatsinis, N.F., Tsoukiàs, A.: Multicriteria user modeling in recommender systems. IEEE Intell. Syst. 26(2), 64–76 (2011)
Lee, S.K., Cho, Y.H., Kim, S.H.: Collaborative filtering with ordinal scale-based implicit ratings for mobile music recommendations. Inf. Sci. 180(11), 2142–2155 (2010)
Li, S., Pham, T., Chuang, H., Wang, Z.W.: Does reliable information matter? Towards a trustworthy co-created recommendation model by mining unboxing reviews. Inf. Syst. e-Bus. Manag. 14(1), 71–99 (2016). https://doi.org/10.1007/s10257-015-0275-6
Liu, D.R., Shih, Y.Y.: Integrating AHP and data mining for product recommendation based on customer lifetime value. Inf. Manag. 42(3), 387–400 (2005)
Mahajan, P., Kaur, P.D.: Three-tier IoT-edge-cloud (3T-IEC) architectural paradigm for real-time event recommendation in event-based social networks. J. Ambient. Intell. Humaniz. Comput. 12(1), 1363–1386 (2020). https://doi.org/10.1007/s12652-020-02202-9
Manouselis, N.: Deploying and evaluating multiattribute product recommendation in e-markets. Int. J. Manag. Decis. Mak. 9(1), 43–61 (2008)
Manouselis, N., Costopoulou, C.: Analysis and classification of multi-criteria recommender systems. World Wide Web 10(4), 415–441 (2007)
Manouselis, N., Costopoulou, C.: marService: multiattribute utility recommendation for e-markets. Int. J. Comput. Appl. Technol. 33(2–3), 176–189 (2008)
Nemery, P., Lamboray, C.: Flow sort: a flow-based sorting method with limiting or central profiles. TOP 16(1), 90–113 (2008). https://doi.org/10.1007/s11750-007-0036-x
Olugbara, O.O., Ojo, S.O., Mphahlele, M.I.: Exploiting image content in location-based shopping recommender systems for mobile users. Int. J. Inf. Technol. Decis. Mak. 09(05), 759–778 (2010)
Opricovic, S., Tzeng, G.H.: Compromise solution by MCDM methods: a comparative analysis of VIKOR and TOPSIS. Eur. J. Oper. Res. 156(2), 445–455 (2004)
Park, H.S., Park, M.H., Cho, S.B.: Mobile information recommendation using multi-criteria decision making with Bayesian network. Int. J. Inf. Technol. Decis. Mak. 14(2), 317–338 (2015)
Pinandito, A., Ananta, M., Brata, K., Fanani, L.: Alternatives weighting in analytic hierarchy process of mobile culinary recommendation system using fuzzy. ARPN J. Eng. Appl. Sci. 10(19), 8791–8798 (2015)
Qin, Y., Wang, X., Xu, Z.: Ranking tourist attractions through online reviews: a novel method with intuitionistic and hesitant fuzzy information based on sentiment analysis. Int. J. Fuzzy Syst. 24(2), 755–777 (2022)
Rizvi, S., Zehra, S., Olariu, S.: ASPIRE: an agent-oriented smart parking recommendation system for smart cities. IEEE Intell. Transp. Syst. Mag. 11(4), 48–61 (2019)
Roy, B.: Electre iii: Un algorithme de classements fondé sur une représentation floue des préférences en présence de critères multiples. Cahiers du Centre d’Etudes de Recherche Opérationnelle 20(1), 3–24 (1978)
Roy, B.: Multicriteria Methodology Goes Decision Aiding, 1st edn. Kluwer Academic Publishers, The Netherlands (1996)
Roy, B., Bouyssou, D.: Aide multicritère à la décision: méthodes et cas, 1st edn. Econômica, Paris (1993)
Saaty, R.: The analytic hierarchy process—what it is and how it is used. Math. Model. 9(3), 161–176 (1987)
Saaty, T.L.: Decision Making with Dependence and Feedback: The Analytic Network Process, vol. 4922. RWS publications, Pittsburgh (1996)
Sabokbar, H., Hosseini, A., Banaitis, A., Banaitiene, N.: A novel sorting method TOPSIS-SORT: an application for Tehran environmental quality evaluation. E a M: Econ. Manag. 19(2), 87–104 (2016)
Serrano-Guerrero, J., Bani-Doumi, M., Romero, F., Olivas, J.: A fuzzy aspect-based approach for recommending hospitals. Int. J. Intell. Syst. 37(4), 2885–2910 (2022)
Showafah, M., Sihwi, S.: Winarno: Ontology-based daily menu recommendation system for complementary food according to nutritional needs using naïve bayes and topsis. Int. J. Adv. Comput. Sci. Appl. 12(11), 638–645 (2021)
Tian, Y., Wang, W., Gong, X., Que, X., Ma, J.: An enhanced personal photo recommendation system by fusing contextual and textual features on mobile device. IEEE Trans. Consum. Electron. 59(1), 220–228 (2013)
Troussas, C., Krouska, A., Sgouropoulou, C.: Enhancing human-computer interaction in digital repositories through a MCDA-based recommender system. Adv. Hum.-Comput. Interact. 2021 (2021)
Vasto-Terrientes, L., Valls, A., Zielniewicz, P., Borràs, J.: A hierarchical multi-criteria sorting approach for recommender systems. J. Intell. Inf. Syst. 46(2), 313–346 (2016)
Verma, P., Sood, S., Kalra, S.: Student career path recommendation in engineering stream based on three-dimensional model. Comput. Appl. Eng. Educ. 25(4), 578–593 (2017)
Wang, N.: Ideological and political education recommendation system based on AHP and improved collaborative filtering algorithm. Sci. Program. 2021, 2648352 (2021)
Wang, L., Zhang, R., Ruan, H.: A personalized recommendation model in E commerce based on TOPSIS algorithm. J. Electron. Commer. Organ. 12(2), 89–100 (2014)
Yang, L., Yeung, K., Ndzi, D.: A proactive personalised mobile recommendation system using analytic hierarchy process and Bayesian network. J. Internet Serv. Appl. 3(2), 195–214 (2012)
Yera Toledo, R., Alzahrani, A.A., Martínez, L.: A food recommender system considering nutritional information and user preferences. IEEE Access 7, 96695–96711 (2019)
Yu, W.: Aide multicritére à la décision dans le cadre de la problématique du tri: Concepts, méthodes et applications. PhD dissertation, Université Paris-Dauphine (1992)
Zavadskas, E.K., Kaklauskas, A., Sarka, V.: The new method of multicriteria complex proportional assessment of projects. Technol. Econ. Dev. Econ. 1, 131–139 (1994)
Acknowledgment
This work was supported by the São Paulo Research Foundation (FAPESP), grants #2018/23447 and #2020/01089-9, and the Brazilian National Council for Scientific and Technological Development (CNPq). This project is also part of the Brazilian Institute of Data Science, grant #2020/09838-0, São Paulo Research Foundation (FAPESP).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Pelissari, R., Alencar, P.S., Amor, S.B., Duarte, L.T. (2022). The Use of Multiple Criteria Decision Aiding Methods in Recommender Systems: A Literature Review. In: Xavier-Junior, J.C., Rios, R.A. (eds) Intelligent Systems. BRACIS 2022. Lecture Notes in Computer Science(), vol 13653. Springer, Cham. https://doi.org/10.1007/978-3-031-21686-2_37
Download citation
DOI: https://doi.org/10.1007/978-3-031-21686-2_37
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-21685-5
Online ISBN: 978-3-031-21686-2
eBook Packages: Computer ScienceComputer Science (R0)