[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Mutation Rate Analysis Using a Self-Adaptive Genetic Algorithm on the OneMax Problem

  • Conference paper
  • First Online:
Intelligent Systems (BRACIS 2022)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13653))

Included in the following conference series:

  • 838 Accesses

Abstract

In this paper, a variation of a genetic algorithm for optimization problems is presented, focusing on the adjustment of the mutation rate parameter by fuzzifying the diversity of the population and the value of the individual’s adaptation. Here, it is important to remember that this parameter directly interferes with the convergence and quality of the solution found by the genetic algorithm. To evaluate the performance of the proposed solution, experiments were conducted on the OneMax problem, analyzing aspects such as: convergence, quality of the solution, the diversity of the population, and the number of individuals evaluated. Obtained results and their impacts are presented in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 71.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 89.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://colab.research.google.com.

References

  1. Bai, Y., Wang, D.: Fundamentals of fuzzy logic control - fuzzy sets, fuzzy rules and defuzzifications. In: Bai, Y., Zhuang, H., Wang, D. (eds.) Advanced Fuzzy Logic Technologies in Industrial Applications. Advances in Industrial Control. Springer, London (2006). https://doi.org/10.1007/978-1-84628-469-4_2

  2. Barcellos, J.C.H.: Algoritmos genéticos adaptativos: um estudo comparativo. Dissertação (Mestrado em Engenharia) - Escola Politécnica da Universidade de São Paulo (2000)

    Google Scholar 

  3. Burdelis, M.A.P.: Ajuste de Taxas de Mutação e de Cruzamento de Algoritmos Genéticos Utilizando-se Inferências Nebulosas. 2009. Dissertação (Mestre em Engenharia) - Departamento de Engenharia de Computação e Sistemas Digitais (PCS), [S. l.] (2009)

    Google Scholar 

  4. Carvalho, W.L.O.: Estudo de parâmetros ótimos em algoritmos genéticos elitistas. Dissertação (Mestrado em Matemática Aplicada e Estatística) - Universidade Federal do Rio Grande do Norte, Natal (2017)

    Google Scholar 

  5. Eiben, A.E., Smith, J.E.: Introduction to Evolutionary Computing. Springer, New York, NY (2003)

    Book  MATH  Google Scholar 

  6. Ferrari, A.C.K., Leandro, G.V., Olieveira, G.: Evolução Diferencial com Parâmetros Ajustáveis por Lógica Fuzzy. Anais do XX Congresso Brasileiro de Automática, [S. l.], pp. 796–803 (2014)

    Google Scholar 

  7. Gerla, G.: Fuzzy Logic: Mathematical Tools for Approximate Reasoning, Trends in Logic, Kluwer Ac. Press (2000). https://doi.org/10.1007/978-94-015-9660-2

  8. Giguere, P., Goldberg, D.E.: Population sizing for optimum sampling with genetic algorithms: a case study of the onemax problem. Genetic Program. 98, 496–503 (1998)

    Google Scholar 

  9. Linden, R. Algoritmos genéticos. 3rd edn. Editora Ciência Moderna, Rio de Janeiro (2012)

    Google Scholar 

  10. Livingston, E.H.: Who was student and why do we care so much about his t-test?1. J. Surgical Res. 118(1), 58–65 (2004)

    Google Scholar 

  11. Mitchell, M.: An Introduction to Genetic Algorithms. MIT Press (1999)

    Google Scholar 

  12. de Oliveira, N.J.R.R.: Avaliação de Taxas de Cruzamento e Mutação em um Algoritmo Genético Baseado em Ordem Aplicado ao Problema do Caixeiro Viajante. 2018. Monografia (Bacharel) - Curso de Bacharelado em Sistemas de Informação, [S. l.] (2018)

    Google Scholar 

  13. Pappa, G.L., Freitas, A.A.: Evolutionary algorithms. In: Automating the Design of Data Mining Algorithms. NCS. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-02541-9_3

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to João Victor Ribeiro Ferro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ferro, J.V.R., Brito, J.R.d.S., Lopes, R.V.V., Costa, E.d.B. (2022). Mutation Rate Analysis Using a Self-Adaptive Genetic Algorithm on the OneMax Problem. In: Xavier-Junior, J.C., Rios, R.A. (eds) Intelligent Systems. BRACIS 2022. Lecture Notes in Computer Science(), vol 13653. Springer, Cham. https://doi.org/10.1007/978-3-031-21686-2_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-21686-2_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-21685-5

  • Online ISBN: 978-3-031-21686-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics