[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Competitive Learning with Spiking Nets and Spike Timing Dependent Plasticity

  • Conference paper
  • First Online:
Artificial Intelligence XXXIX (SGAI-AI 2022)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13652))

Abstract

This paper explores machine learning using biologically plausible neurons and learning rules. Two systems are developed. The first, for student performance categorisation, uses a two layer system and explores data encoding mechanisms. The second, for digit categorisation, explores competitive behaviour between categorisation neurons using a three layer system with an inhibitory layer. Both are successful. The competitive mechanism from the second system is more plausible biologically, and, by using one neuron per input feature, uses fewer neurons.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 51.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 64.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    The code can be found on http://www.cwa.mdx.ac.uk/spikeLearn/spikeLearn.html.

References

  1. Bache, K., Lichman, M.: UCI machine learning repository (2013). http://archive.ics.uci.edu/ml

  2. Benda, J.: Neural adaptation. Curr. Biol. 31(3), R110–R116 (2021)

    Article  Google Scholar 

  3. Bi, G., Poo, M.: Synaptic modifications in cultured hippocampal neurons: dependence on spike timing, synaptic strength, and postsynaptic cell type. J. Neurosci. 18(24), 10464–10472 (1998)

    Article  Google Scholar 

  4. Brette, R., Gerstner, W.: Adaptive exponential integrate-and-fire model as an effective description of neuronal activity. J. Neurophysiol. 94, 3637–3642 (2005)

    Article  Google Scholar 

  5. Churchland, P., Sejnowski, T.: The Computational Brain. MIT Press, Cambridge (1999)

    Google Scholar 

  6. Cortez, P., Silva, A.: UCI machine learning repository (2014). http://archive.ics.uci.edu/ml/datasets/student+performance

  7. Davison, A., Yger, P., Kremkow, J., Perrinet, L., Muller, E.: PyNN: towards a universal neural simulator API in Python. BMC Neurosci. 8(S2), P2 (2007)

    Article  Google Scholar 

  8. Devlin, J., Chang, M., K.Lee, Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018)

  9. Diehl, P., Cook, M.: Unsupervised learning of digit recognition using spike-timing-dependent plasticity. Front. Comput. Neurosci. 9, 99 (2015)

    Article  Google Scholar 

  10. Fardet, T., et al.: Nest 2.20.1. Comput. Syst. Neurosci. (2020)

    Google Scholar 

  11. Gewaltig, M., Diesmann, M.: NEST (NEural simulation tool). Scholarpedia 2(4), 1430 (2007)

    Article  Google Scholar 

  12. Hebb, D.: The Organization of Behavior: A Neuropsychological Theory. Wiley, New York (1949)

    Google Scholar 

  13. Hsu, D., Tan, A., Hsu, M., Beggs, J.: A simple spontaneously active Hebbian learning model: homeostasis of activity and connectivity, and consequences for learning and epileptogensis. Phys. Rev. E 76, 041909 (2007)

    Article  MathSciNet  Google Scholar 

  14. Huyck, C.: The neural cognitive architecture. In: AAAI Fall Symposium on A A Standard Model of the Mind (2017)

    Google Scholar 

  15. Huyck, C.: Learning categories with spiking nets and spike timing dependent plasticity. In: International Conference on Innovative Techniques and Applications of Artificial Intelligence, pp. 139–144 (2020)

    Google Scholar 

  16. Huyck, C., Samey, C.: Extended category learning with spiking nets and spike timing dependent plasticity. In: International Conference on Innovative Techniques and Applications of Artificial Intelligence, pp. 33–43 (2021)

    Google Scholar 

  17. Kohonen, T.: Self-Organizing Maps. Springer, Heidelberg (1997). https://doi.org/10.1007/978-3-642-56927-2

    Book  MATH  Google Scholar 

  18. Silver, D., Schrittwieser, J., Simonyan, K., Hassabis, D., et al.: Mastering the game of go without human knowledge. Nature 550, 354–359 (2017)

    Google Scholar 

  19. Song, S., Miller, K., Abbott, L.: Competitive Hebbian learning through spike-timing-dependent synaptic plasticity. Nat. Neurosci. 3(9), 919–926 (2000)

    Article  Google Scholar 

  20. Taherkhani, A., Belatreche, A., Li, Y., Cosma, G., Maguire, L., McGinnity, T.: A review of learning in biologically plausible spiking neural networks. Neural Netw. 122, 243–272 (2020)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Huyck .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Huyck, C., Erekpaine, O. (2022). Competitive Learning with Spiking Nets and Spike Timing Dependent Plasticity. In: Bramer, M., Stahl, F. (eds) Artificial Intelligence XXXIX. SGAI-AI 2022. Lecture Notes in Computer Science(), vol 13652. Springer, Cham. https://doi.org/10.1007/978-3-031-21441-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-21441-7_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-21440-0

  • Online ISBN: 978-3-031-21441-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics