Abstract
This paper explores machine learning using biologically plausible neurons and learning rules. Two systems are developed. The first, for student performance categorisation, uses a two layer system and explores data encoding mechanisms. The second, for digit categorisation, explores competitive behaviour between categorisation neurons using a three layer system with an inhibitory layer. Both are successful. The competitive mechanism from the second system is more plausible biologically, and, by using one neuron per input feature, uses fewer neurons.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
The code can be found on http://www.cwa.mdx.ac.uk/spikeLearn/spikeLearn.html.
References
Bache, K., Lichman, M.: UCI machine learning repository (2013). http://archive.ics.uci.edu/ml
Benda, J.: Neural adaptation. Curr. Biol. 31(3), R110–R116 (2021)
Bi, G., Poo, M.: Synaptic modifications in cultured hippocampal neurons: dependence on spike timing, synaptic strength, and postsynaptic cell type. J. Neurosci. 18(24), 10464–10472 (1998)
Brette, R., Gerstner, W.: Adaptive exponential integrate-and-fire model as an effective description of neuronal activity. J. Neurophysiol. 94, 3637–3642 (2005)
Churchland, P., Sejnowski, T.: The Computational Brain. MIT Press, Cambridge (1999)
Cortez, P., Silva, A.: UCI machine learning repository (2014). http://archive.ics.uci.edu/ml/datasets/student+performance
Davison, A., Yger, P., Kremkow, J., Perrinet, L., Muller, E.: PyNN: towards a universal neural simulator API in Python. BMC Neurosci. 8(S2), P2 (2007)
Devlin, J., Chang, M., K.Lee, Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018)
Diehl, P., Cook, M.: Unsupervised learning of digit recognition using spike-timing-dependent plasticity. Front. Comput. Neurosci. 9, 99 (2015)
Fardet, T., et al.: Nest 2.20.1. Comput. Syst. Neurosci. (2020)
Gewaltig, M., Diesmann, M.: NEST (NEural simulation tool). Scholarpedia 2(4), 1430 (2007)
Hebb, D.: The Organization of Behavior: A Neuropsychological Theory. Wiley, New York (1949)
Hsu, D., Tan, A., Hsu, M., Beggs, J.: A simple spontaneously active Hebbian learning model: homeostasis of activity and connectivity, and consequences for learning and epileptogensis. Phys. Rev. E 76, 041909 (2007)
Huyck, C.: The neural cognitive architecture. In: AAAI Fall Symposium on A A Standard Model of the Mind (2017)
Huyck, C.: Learning categories with spiking nets and spike timing dependent plasticity. In: International Conference on Innovative Techniques and Applications of Artificial Intelligence, pp. 139–144 (2020)
Huyck, C., Samey, C.: Extended category learning with spiking nets and spike timing dependent plasticity. In: International Conference on Innovative Techniques and Applications of Artificial Intelligence, pp. 33–43 (2021)
Kohonen, T.: Self-Organizing Maps. Springer, Heidelberg (1997). https://doi.org/10.1007/978-3-642-56927-2
Silver, D., Schrittwieser, J., Simonyan, K., Hassabis, D., et al.: Mastering the game of go without human knowledge. Nature 550, 354–359 (2017)
Song, S., Miller, K., Abbott, L.: Competitive Hebbian learning through spike-timing-dependent synaptic plasticity. Nat. Neurosci. 3(9), 919–926 (2000)
Taherkhani, A., Belatreche, A., Li, Y., Cosma, G., Maguire, L., McGinnity, T.: A review of learning in biologically plausible spiking neural networks. Neural Netw. 122, 243–272 (2020)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Huyck, C., Erekpaine, O. (2022). Competitive Learning with Spiking Nets and Spike Timing Dependent Plasticity. In: Bramer, M., Stahl, F. (eds) Artificial Intelligence XXXIX. SGAI-AI 2022. Lecture Notes in Computer Science(), vol 13652. Springer, Cham. https://doi.org/10.1007/978-3-031-21441-7_11
Download citation
DOI: https://doi.org/10.1007/978-3-031-21441-7_11
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-21440-0
Online ISBN: 978-3-031-21441-7
eBook Packages: Computer ScienceComputer Science (R0)