[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

DC\(^2\)U-Net: Tract Segmentation in Brain White Matter Using Dense Criss-Cross U-Net

  • Conference paper
  • First Online:
Computational Diffusion MRI (CDMRI 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13722))

Included in the following conference series:

Abstract

Diffusion magnetic resonance imaging (dMRI) is a non-invasive technique for studying the microstructure properties of brain white matter (WM) in vivo. Segmentation of WM fiber tracts can be used to characterize the topological structure of the human brain and to exploit the biological landmark of abnormal areas by dMRI. To improve the performance of the fiber tract segmentation, we propose a novel U-Net based architecture with dense criss-cross attention, which captures non-local rich global contextual information more efficiently. Our model is evaluated using the real brain data from Human Connectome Project (HCP). Extensive experiments demonstrate that our model improves the performance of fiber tract segmentation, especially for the fiber bundle with complicated topology structure.

This work was supported in part by the Natural Science Foundation of Heilongjiang Province under Grant LH2021F046.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 39.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 49.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://zenodo.org/record/3518348/files/best_weights_ep220.npz.

References

  1. Chandio, B.Q., et al.: Bundle analytics, a computational framework for investigating the shapes and profiles of brain pathways across populations. Sci. Rep. 10(1), 1–18 (2020)

    Article  Google Scholar 

  2. Chen, G., Dong, B., Zhang, Y., Lin, W., Shen, D., Yap, P.T.: Denoising of infant diffusion MRI data via graph framelet matching in x-q space. IEEE Trans. Med. Imaging 38(12), 2838–2848 (2019)

    Article  Google Scholar 

  3. Chen, G., Dong, B., Zhang, Y., Lin, W., Shen, D., Yap, P.T.: XQ-SR: joint x-q space super-resolution with application to infant diffusion MRI. Med. Image Anal. 57, 44–55 (2019)

    Article  Google Scholar 

  4. Chen, G., Wu, Y., Shen, D., Yap, P.T.: Noise reduction in diffusion MRI using non-local self-similar information in joint x-q space. Med. Image Anal. 53, 79–94 (2019)

    Article  Google Scholar 

  5. Essen, D.C.V., Smith, S.M., Barch, D.M., Behrens, T.E., Yacoub, E., Ugurbil, K.: The WU-Minn human connectome project: an overview. Neuroimage 80, 62–79 (2013)

    Article  Google Scholar 

  6. Garyfallidis, E., et al.: Recognition of white matter bundles using local and global streamline-based registration and clustering. Neuroimage 170, 283–295 (2018)

    Article  Google Scholar 

  7. Girard, G., Whittingstall, K., Deriche, R., Descoteaux, M.: Towards quantitative connectivity analysis: reducing tractography biases. Neuroimage 98, 266–278 (2014)

    Article  Google Scholar 

  8. Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4700–4708 (2017)

    Google Scholar 

  9. Huang, Z., Wang, X., Huang, L., Huang, C., Wei, Y., Liu, W.: CCNet: criss-cross attention for semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 603–612 (2019)

    Google Scholar 

  10. Jeurissen, B., Tournier, J.D., Dhollander, T., Connelly, A., Sijbers, J.: Multi-tissue constrained spherical deconvolution for improved analysis of multi-shell diffusion MRI data. Neuroimage 103, 411–426 (2014)

    Article  Google Scholar 

  11. Lee, C.Y., Xie, S., Gallagher, P., Zhang, Z., Tu, Z.: Deeply-supervised nets. In: Artificial Intelligence and Statistics, pp. 562–570. PMLR (2015)

    Google Scholar 

  12. Li, B., et al.: Neuro4neuro: a neural network approach for neural tract segmentation using large-scale population-based diffusion imaging. Neuroimage 218, 116993 (2020)

    Article  Google Scholar 

  13. Liu, F., et al.: DeepBundle: fiber bundle parcellation with graph convolution neural networks. In: Zhang, D., Zhou, L., Jie, B., Liu, M. (eds.) GLMI 2019. LNCS, vol. 11849, pp. 88–95. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-35817-4_11

    Chapter  Google Scholar 

  14. Lu, Q., Li, Y., Ye, C.: Volumetric white matter tract segmentation with nested self-supervised learning using sequential pretext tasks. Med. Image Anal. 72, 102094 (2021)

    Article  Google Scholar 

  15. Maier-Hein, K.H., et al.: The challenge of mapping the human connectome based on diffusion tractography. Nat. Commun. 8(1), 1–13 (2017)

    Article  Google Scholar 

  16. Mou, L., et al.: Cs2-net: deep learning segmentation of curvilinear structures in medical imaging. Med. Image Anal. 67, 101874 (2021)

    Article  Google Scholar 

  17. Paszke, A., et al.: PyTorch: an imperative style, high-performance deep learning library. In: Advances in Neural Information Processing Systems, vol. 32 (2019)

    Google Scholar 

  18. Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  19. Taha, A.A., Hanbury, A.: Metrics for evaluating 3D medical image segmentation: analysis, selection, and tool. BMC Med. Imaging 15(1), 1–28 (2015)

    Article  Google Scholar 

  20. Wang, X., Girshick, R., Gupta, A., He, K.: Non-local neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7794–7803 (2018)

    Google Scholar 

  21. Wassermann, D., et al.: The white matter query language: a novel approach for describing human white matter anatomy. Brain Struct. Funct. 221(9), 4705–4721 (2016)

    Article  Google Scholar 

  22. Wasserthal, J., Neher, P., Maier-Hein, K.H.: TractSeg-fast and accurate white matter tract segmentation. Neuroimage 183, 239–253 (2018)

    Article  Google Scholar 

  23. Zarkali, A., McColgan, P., Leyland, L.A., Lees, A.J., Rees, G., Weil, R.S.: Fiber-specific white matter reductions in Parkinson hallucinations and visual dysfunction. Neurology 94(14), e1525–e1538 (2020)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Geng Chen or Jiquan Ma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yin, H., Xu, P., Cui, H., Chen, G., Ma, J. (2022). DC\(^2\)U-Net: Tract Segmentation in Brain White Matter Using Dense Criss-Cross U-Net. In: Cetin-Karayumak, S., et al. Computational Diffusion MRI. CDMRI 2022. Lecture Notes in Computer Science, vol 13722. Springer, Cham. https://doi.org/10.1007/978-3-031-21206-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-21206-2_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-21205-5

  • Online ISBN: 978-3-031-21206-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics