Abstract
Diffusion magnetic resonance imaging (dMRI) is a non-invasive technique for studying the microstructure properties of brain white matter (WM) in vivo. Segmentation of WM fiber tracts can be used to characterize the topological structure of the human brain and to exploit the biological landmark of abnormal areas by dMRI. To improve the performance of the fiber tract segmentation, we propose a novel U-Net based architecture with dense criss-cross attention, which captures non-local rich global contextual information more efficiently. Our model is evaluated using the real brain data from Human Connectome Project (HCP). Extensive experiments demonstrate that our model improves the performance of fiber tract segmentation, especially for the fiber bundle with complicated topology structure.
This work was supported in part by the Natural Science Foundation of Heilongjiang Province under Grant LH2021F046.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Chandio, B.Q., et al.: Bundle analytics, a computational framework for investigating the shapes and profiles of brain pathways across populations. Sci. Rep. 10(1), 1–18 (2020)
Chen, G., Dong, B., Zhang, Y., Lin, W., Shen, D., Yap, P.T.: Denoising of infant diffusion MRI data via graph framelet matching in x-q space. IEEE Trans. Med. Imaging 38(12), 2838–2848 (2019)
Chen, G., Dong, B., Zhang, Y., Lin, W., Shen, D., Yap, P.T.: XQ-SR: joint x-q space super-resolution with application to infant diffusion MRI. Med. Image Anal. 57, 44–55 (2019)
Chen, G., Wu, Y., Shen, D., Yap, P.T.: Noise reduction in diffusion MRI using non-local self-similar information in joint x-q space. Med. Image Anal. 53, 79–94 (2019)
Essen, D.C.V., Smith, S.M., Barch, D.M., Behrens, T.E., Yacoub, E., Ugurbil, K.: The WU-Minn human connectome project: an overview. Neuroimage 80, 62–79 (2013)
Garyfallidis, E., et al.: Recognition of white matter bundles using local and global streamline-based registration and clustering. Neuroimage 170, 283–295 (2018)
Girard, G., Whittingstall, K., Deriche, R., Descoteaux, M.: Towards quantitative connectivity analysis: reducing tractography biases. Neuroimage 98, 266–278 (2014)
Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4700–4708 (2017)
Huang, Z., Wang, X., Huang, L., Huang, C., Wei, Y., Liu, W.: CCNet: criss-cross attention for semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 603–612 (2019)
Jeurissen, B., Tournier, J.D., Dhollander, T., Connelly, A., Sijbers, J.: Multi-tissue constrained spherical deconvolution for improved analysis of multi-shell diffusion MRI data. Neuroimage 103, 411–426 (2014)
Lee, C.Y., Xie, S., Gallagher, P., Zhang, Z., Tu, Z.: Deeply-supervised nets. In: Artificial Intelligence and Statistics, pp. 562–570. PMLR (2015)
Li, B., et al.: Neuro4neuro: a neural network approach for neural tract segmentation using large-scale population-based diffusion imaging. Neuroimage 218, 116993 (2020)
Liu, F., et al.: DeepBundle: fiber bundle parcellation with graph convolution neural networks. In: Zhang, D., Zhou, L., Jie, B., Liu, M. (eds.) GLMI 2019. LNCS, vol. 11849, pp. 88–95. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-35817-4_11
Lu, Q., Li, Y., Ye, C.: Volumetric white matter tract segmentation with nested self-supervised learning using sequential pretext tasks. Med. Image Anal. 72, 102094 (2021)
Maier-Hein, K.H., et al.: The challenge of mapping the human connectome based on diffusion tractography. Nat. Commun. 8(1), 1–13 (2017)
Mou, L., et al.: Cs2-net: deep learning segmentation of curvilinear structures in medical imaging. Med. Image Anal. 67, 101874 (2021)
Paszke, A., et al.: PyTorch: an imperative style, high-performance deep learning library. In: Advances in Neural Information Processing Systems, vol. 32 (2019)
Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28
Taha, A.A., Hanbury, A.: Metrics for evaluating 3D medical image segmentation: analysis, selection, and tool. BMC Med. Imaging 15(1), 1–28 (2015)
Wang, X., Girshick, R., Gupta, A., He, K.: Non-local neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7794–7803 (2018)
Wassermann, D., et al.: The white matter query language: a novel approach for describing human white matter anatomy. Brain Struct. Funct. 221(9), 4705–4721 (2016)
Wasserthal, J., Neher, P., Maier-Hein, K.H.: TractSeg-fast and accurate white matter tract segmentation. Neuroimage 183, 239–253 (2018)
Zarkali, A., McColgan, P., Leyland, L.A., Lees, A.J., Rees, G., Weil, R.S.: Fiber-specific white matter reductions in Parkinson hallucinations and visual dysfunction. Neurology 94(14), e1525–e1538 (2020)
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Yin, H., Xu, P., Cui, H., Chen, G., Ma, J. (2022). DC\(^2\)U-Net: Tract Segmentation in Brain White Matter Using Dense Criss-Cross U-Net. In: Cetin-Karayumak, S., et al. Computational Diffusion MRI. CDMRI 2022. Lecture Notes in Computer Science, vol 13722. Springer, Cham. https://doi.org/10.1007/978-3-031-21206-2_10
Download citation
DOI: https://doi.org/10.1007/978-3-031-21206-2_10
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-21205-5
Online ISBN: 978-3-031-21206-2
eBook Packages: Computer ScienceComputer Science (R0)