[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Drug Trafficking in Relation to Global Shipping Network

  • Conference paper
  • First Online:
Complex Networks and Their Applications XI (COMPLEX NETWORKS 2016 2022)

Abstract

This paper aims to understand to what extent the amount of drug (e.g., cocaine) trafficking per country can be explained and predicted using the global shipping network. We propose three distinct network approaches, based on topological centrality metrics, Susceptible-Infected-Susceptible spreading process and a flow optimization model of drug trafficking on the shipping network, respectively. These approaches derive centrality metrics, infection probability, and inflow of drug traffic per country respectively, to estimate the amount of drug trafficking. We use the amount of drug seizure as an approximation of the amount of drug trafficking per country to evaluate our methods. Specifically, we investigate to what extent different methods could predict the ranking of countries in drug seizure (amount). Furthermore, these three approaches are integrated by a linear regression method in which we combine the nodal properties derived by each method to build a comprehensive model for the cocaine seizure data. Our analysis finds that the unweighted eigenvector centrality metric combined with the inflow derived by the flow optimization method best identifies the countries with a large amount of drug seizure (e.g., rank correlation 0.45 with the drug seizure). Extending this regression model with two extra features, the distance of a country from the source of cocaine production and a country’s income group, increases further the prediction quality (e.g., rank correlation 0.79). This final model provides insights into network derived properties and complementary country features that are explanatory for the amount of cocaine seized. The model can also be used to identify countries that have no drug seizure data but are possibly susceptible to cocaine trafficking.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 263.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 329.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
GBP 329.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://unctad.org/webflyer/review-maritime-transport-2018.

  2. 2.

    When drug seizure and the nodal property are supposed to be negatively correlated.

References

  1. Li, C., Li, Q., Van Mieghem, P., Eugene Stanley, H., Wang, H.: Correlation between centrality metrics and their application to the opinion model. Euro. Phys. J. B 88(3), 1–13 (2015)

    Article  Google Scholar 

  2. Lü, L., Chen, D., Ren, X.-L., Zhang, Q.-M., Zhang, Y.-C., Zhou, T.: Vital nodes identification in complex networks. Phys. Rep. 650, 1–63 (2016)

    Article  Google Scholar 

  3. Pastor-Satorras, R., Vespignani, A.: Immunization of complex networks. Phys. Rev. E 65(3), 036104 (2002)

    Article  Google Scholar 

  4. Kitsak, M., Gallos, L.K., Havlin, S., Liljeros, F., Muchnik, L., Eugene Stanley, H., Makse, H.A.: Identification of influential spreaders in complex networks. Nat. Phys. 6(11), 888–893 (2010)

    Article  Google Scholar 

  5. Borge-Holthoefer, J., Moreno, Y.: Absence of influential spreaders in rumor dynamics. Phys. Rev. E 85(2), 026116 (2012)

    Article  Google Scholar 

  6. Pastor-Satorras, R., Castellano, C., Van Mieghem, P., Vespignani, A.: Epidemic processes in complex networks. Rev. Mod. Phys. 87(3), 925 (2015)

    Article  Google Scholar 

  7. Kiss, I.Z., Miller, J.C., Simon, P.L., et al.: Mathematics of Epidemics on Networks, p. 598. Springer, Cham (2017)

    Book  Google Scholar 

  8. Zhang, S., Zhao, X., Wang, H.: Mitigate sir epidemic spreading via contact blocking in temporal networks. Appl. Netw. Sci. 7(1), 1–22 (2022)

    Article  Google Scholar 

  9. Kaluza, P., Kölzsch, A., Gastner, M.T., Blasius, B.: The complex network of global cargo ship movements. J. R. Soc. Interface 7(48), 1093–1103 (2010)

    Article  Google Scholar 

  10. Pan, J.-J., Bell, M.G.H., Cheung, K.-F., Perera, S., Yu, H.: Connectivity analysis of the global shipping network by eigenvalue decomposition. Maritime Policy Manage. 46(8), 957–966 (2019)

    Article  Google Scholar 

  11. Li, Z., Mengqiao, X., Shi, Y.: Centrality in global shipping network basing on worldwide shipping areas. GeoJournal 80(1), 47–60 (2015)

    Article  Google Scholar 

  12. Xu, M., Pan, Q., Muscoloni, A., Xia, H., Cannistraci, C.V.: Modular gateway-ness connectivity and structural core organization in maritime network science. Nat. Commun. 11(1), 1–15 (2020)

    Google Scholar 

  13. Xu, J., Wickramarathne, T.L., Chawla, N.V., Grey, E.K., Steinhaeuser, K., Keller, R.P., Drake, J.M., Lodge, D.M.: Improving management of aquatic invasions by integrating shipping network, ecological, and environmental data: data mining for social good. In: Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1699–1708 (2014)

    Google Scholar 

  14. Saebi, M., Xu, J., Grey, E.K., Lodge, D.M., Corbett, J.J., Chawla, N.: Higher-order patterns of aquatic species spread through the global shipping network. Plos One 15(7), e0220353 (2020)

    Article  Google Scholar 

  15. UNODC: Annual Drug Seizure Report. https://dataunodc.un.org/drugs/seizures, 2012–2016. Online. Accessed 20 Mar 2022

  16. Kojaku, S., Mengqiao, X., Xia, H., Masuda, N.: Multiscale core-periphery structure in a global liner shipping network. Sci. Rep. 9(1), 1–15 (2019)

    Article  Google Scholar 

  17. Xu, M.: Resource. http://www.mengqiaoxu.com/resource.html, 2019. Online. Accessed 28 Mar 2022

  18. Marine Traffic. Ports Database. https://www.marinetraffic.com/en/data/, 2022. Online. Accessed 28 Mar 2022

  19. Anthonisse, J.M.: The rush in a directed graph. In: Stichting Mathematisch Centrum. Mathematische Besliskunde, (BN 9/71) (1971)

    Google Scholar 

  20. Wang, H., Hernandez, J.M., Van Mieghem, P.: Betweenness centrality in a weighted network. Phys. Rev. E 77(4), 046105 (2008)

    Article  Google Scholar 

  21. Ceria, A., Köstler, K., Gobardhan, R., Wang, H.: Modeling airport congestion contagion by heterogeneous sis epidemic spreading on airline networks. Plos One 16(1), e0245043 (2021)

    Article  Google Scholar 

  22. Van Mieghem, P., Omic, J., Kooij, R.: Virus spread in networks. IEEE/ACM Trans. Netw. 17(1), 1–14 (2008)

    Article  Google Scholar 

  23. Bo, Q., Li, C., Van Mieghem, P., Wang, H.: Ranking of nodal infection probability in susceptible-infected-susceptible epidemic. Sci. Rep. 7, 9233 (2017)

    Article  Google Scholar 

  24. Van Mieghem, P.: Performance Analysis of Complex Networks and Systems. Cambridge University Press (2014)

    Google Scholar 

  25. Boivin, R.: Drug trafficking networks in the world-economy. Crime Netw. (2013)

    Google Scholar 

  26. UNODC and EUROPOL. The illicit trade of cocaine from latin america to europe—from oligopolies to freefor-all. Cocaine Insights 1, Sept 2021

    Google Scholar 

  27. UNODC. Statistical Annex: 6.1.3 Cocaine manufacture. https://www.unodc.org/unodc/en/data-and-analysis/wdr2021_annex.html, 2019. Online. Accessed 20 Mar 2022

  28. UNODC. Statistical Annex: 1.2 Prevalence of drug use in the general population, including NPS—national data. https://www.unodc.org/unodc/en/data-and-analysis/wdr2021_annex.html, 2019. Online. Accessed 20 Mar 2022

  29. Geo Data Source. Country Borders. https://www.geodatasource.com/addon/country-borders, 2022. Online. Accessed 20 Mar 2022

  30. The World Bank. World Development Indicators. https://data.worldbank.org/indicator, 2020. Online. Accessed 03 May 2022

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huijuan Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Leibbrandt, L. et al. (2023). Drug Trafficking in Relation to Global Shipping Network. In: Cherifi, H., Mantegna, R.N., Rocha, L.M., Cherifi, C., Micciche, S. (eds) Complex Networks and Their Applications XI. COMPLEX NETWORKS 2016 2022. Studies in Computational Intelligence, vol 1078. Springer, Cham. https://doi.org/10.1007/978-3-031-21131-7_52

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-21131-7_52

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-21130-0

  • Online ISBN: 978-3-031-21131-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics