[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Assessing Efficiency Benefits of Edge Intelligence

  • Conference paper
  • First Online:
Internet of Things (GIoTS 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13533))

Included in the following conference series:

  • 919 Accesses

Abstract

The recent focus on deep learning accuracy ignored economic and environmental cost. Introduction of Green AI is hampered by lack of metrics that balance rewards for accuracy and cost and thus improve selection of best deep learning algorithms and platforms. Recognition and training efficiency universally compare deep learning based on energy consumption measurements for inference and deep learning, on recognition gradients, and on number of classes. Sustainability is assessed with deep learning lifecycle efficiency and life cycle recognition efficiency metrics that include the number of times models are used.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 55.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 69.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Reuther, A., Michaleas, P., Jones, M., Gadepally, V., Samsi, S., Kepner, J.: Survey and Benchmarking of machine learning accelerators. In: 2019 IEEE High Performance Extreme Computing Conference (HPEC). arXiv:1908.11348v1

  2. Horowitz, M.: Computing’s Energy Problem (and What We Can Do About It). In: 2014 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC). IEEE, 2014, pp. 10–14. http://ieeexplore.ieee.org/document/6757323/

  3. Hennessy, J.L., Patterson, D.A.: A new golden age for computer architecture. Comm. ACM 62(2), 48-60 (2019)https://dl.acm.org/doi/10.1145/3282307

  4. Schwartz, R., Dodge, J., Smith, N.A., Etzioni, O.: “Green AI” (2019). arXiv:1907.10597v3

  5. Cai, E., Juan, D.C., Stamoulis, D., Marculescu, D.: NeuralPower: predict and deploy energy-efficient convolutional neural networks. In: Proceedings of Machine Learning Research 77, pp. 622–637. ACML (2017)

    Google Scholar 

  6. Thompson, N.C., Greenewald, K., Lee, K., Manso, G.F.: The Computational Limits of Deep Learning (2020). arXiv:2007.05558v1

  7. Zhou, Z., Chen, X., Li, E., Zeng, L., Luo, K., Zhang, J.: Edge intelligence: paving the last mile of artificial intelligence with edge computing (2019). arXiv:1905.10083v1

  8. Zhang, X., Wang, Y., Lu, S., Liu, L., Xu, L., Shi, W.: OpenEI: an open framework for edge intelligence (2019). arXiv:1906.01864v1

  9. Konecny, J., McMahan, H.B., Yu, F.X., Suresh, A.T., Bacon, D.: Federated learning: strategies for improving communication efficiency (2017). arXiv:1610.05492v2

  10. McMahan, H.B., Moore, E., Ramage, D., Hampson, S., Arcas, B.A.: Communication-efficient learning of deep networks from decentralized data. In: Proceedings of the 20th International Conference Artificial Intelligence and Statistics (AISTATS), Fort Lauderdale, FL (2017)

    Google Scholar 

  11. Deng, S., Zhao, H., Fang, W., Yin, J., Dustdar, S., Zomaya, A.Y.: Edge intelligence: the confluence of edge computing and artificial intelligence (2020). arXiv: 1909.00560v2

    Google Scholar 

  12. Das, A., Brunschwiler, T.: Privacy is whatwe care about: experimental investigation of federated learning on edge devices. In: Proceedings of First International Workshop on Challenges in Artificial Intelligence and Machine Learning for IoT, pp. 39–42 (2019)

    Google Scholar 

  13. Kasturi, A., Ellore, A.R., Hota, C.: Fusion learning: a one-shot federated learning, ICCS 2020. LNCS 12139, 424–436 (2020)

    Google Scholar 

  14. Xu, Z., Li, L., Zou, W.: Exploring federated learning on battery-powered devices, ACM TURC, May 17–19, Chengdu, China (2019)

    Google Scholar 

  15. Edge TPU: Coral DEV.https://coral.ai/docs/dev-board/datasheet/

  16. NCS2.https://ark.intel.com/content/www/de/de/ark/products/140109/intel-neural-compute-stick-2.html

  17. Jetson.www.nvidia.com/de-de/autonomous-machines/embedded-systems/jetson-nano/

  18. Klingner, S., et al: Firefighter virtual reality simulation for personalized stress det., KI (2020)

    Google Scholar 

  19. Inoue, T., Vinayavekhin, P., Wang, S., Wood, D., Greco, N., Tachibana, R.: Domestic activities classification based on CNN using shuffling and mixing data augmentation, detection and classification of acoustic scenes and events (2018)

    Google Scholar 

  20. Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L.C.: MobileNetV2: inverted residuals and linear bottlenecks (2019). https://arxiv.org/pdf/1801.04381.pdf

  21. Joy-IT, Germany. https://joy-it.net/de/products/JT-UM25C)

  22. (Rotkreuz, Switzerland. https://web.smart-me.com/en/project/smart-me-plug-2/

  23. Hossin, M., Sulaiman, M.N.: A review on evaluation metrics for data classification evaluations. Int. J. Data Min. Knowl. Manage Process (IJDKP) 5,(2), 1–11 (2015)

    Google Scholar 

  24. Coroama, V.C., Hilty, L.M.: Assessing internet energy intensity: a review of methods and results. Environ. Impact Assess. Rev. 45, 63–68 (2014)

    Article  Google Scholar 

  25. Pihkola, H., Hongisto, M., Apilo, O., Lasanen, M.: Evaluating the energy consumption of mobile data transfer–from technology development to consumer behaviour and life cycle thinking. Sustainability 10, 2494 (2018)

    Article  Google Scholar 

  26. Hodak, M., Gorvenko, M., Dholakia, A.: Towards Power Efficiency in Deep Learning on Data Center Hardware. In: IEEE Big Data 2019 Conference (2019)

    Google Scholar 

  27. You, Y., Zhang, Z., Hsieh, C.-J., Demmel, J., Kreutzer, K.: ImageNet training in minutes (2018). https://arxiv.org/abs/1709.05011

  28. Nilsson, A., Smith, S., Ulm, G., Gustavsson, E., Jirstrand, M.: A performance evaluation of federated learning algorithms. DIDL 2018, Dec. 10–11, Rennes, France (2018)

    Google Scholar 

  29. Sze, V., Hsin, Y., Yang, T.J., Emer, J.S.: Efficient processing of deep neural networks: a tutorial and survey. Proc. IEEE 105(12), 2295–2329 (2017)

    Article  Google Scholar 

  30. Shankar, Structuring your machine learning projects (2020). https://medium.com/structuring-your-machine-learning-projects/satisficing-and-optimizing-metric-24372e0a73c

  31. Cai, H., Gan, C., Wang, T., Zhang, Z., Han, S.: Once-for-all: train one network and specialize it for efficient deployment. ICLR (2020). https://arxiv.org/abs/1908.09791

  32. Brevini, B.: Black boxes, not green: mythologizing artificial intelligence and omitting the environment. July–December: 1–5 Big Data Society, 7, 2053951720935141 (2020)

    Google Scholar 

  33. https://www.growthink.com/content/two-most-important-quotes-business

  34. Ignatov, A., et al.: AI benchmark: running deep neural networks on android smartphones. In: Leal-Taixé, L., Roth, S. (eds.) Computer Vision – ECCV 2018 Workshops. ECCV 2018. Lecture Notes in Computer Science, vol. 11133, pp. 288–314. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11021-5_19

  35. Mastroianni, C., et al.: Special issue on edge intelligence for sustainable smart environments. IEEE Trans. Green Commun. Netw. 6(1), 234–237 (2022)

    Google Scholar 

  36. Savaglio, C., Gerace, P., Di Fatta, G., Fortino, G.: Data mining at the IoT edge. In: 2019 28th International Conference on Computer Communication and Networks (ICCCN). IEEE, pp. 1-6 (2019)

    Google Scholar 

  37. Lenherr, N., Pawlitzek, R., Michel, B.: New universal sustainability metrics to assess edge intelligence. Sustain. Comput.: Inf. Syst. 31, 100580 (2021)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruno Michel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lenherr, N., Pawlitzek, R., Michel, B. (2022). Assessing Efficiency Benefits of Edge Intelligence. In: González-Vidal, A., Mohamed Abdelgawad, A., Sabir, E., Ziegler, S., Ladid, L. (eds) Internet of Things. GIoTS 2022. Lecture Notes in Computer Science, vol 13533. Springer, Cham. https://doi.org/10.1007/978-3-031-20936-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20936-9_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20935-2

  • Online ISBN: 978-3-031-20936-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics