[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Multi-view Stereo Network with Attention Thin Volume

  • Conference paper
  • First Online:
PRICAI 2022: Trends in Artificial Intelligence (PRICAI 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13631))

Included in the following conference series:

Abstract

We propose an efficient multi-view stereo (MVS) network for inferring depth value from multiple RGB images. Recent studies use the cost volume to encode the matching correspondence between different views, but this structure can still be optimized from the perspective of image features. First of all, to fully aggregate the dominant interrelationship from input images, we introduce a self-attention mechanism to our feature extractor, which can accurately model long-range dependencies between adjacent pixels. Secondly, to unify the extracted feature maps into the MVS problem, we further design an efficient feature-wise loss function, which constrains the corresponding feature vectors more spatially distinctive during training. The robustness and accuracy of the reconstructed point cloud are improved by enhancing the reliability of correspondence matches. Finally, to reduce the extra memory burden caused by the above methods, we follow the coarse to fine strategy. The group-wise correlation and uncertainty estimates are combined to construct a lightweight cost volume. This can improve the efficiency and generalization performance of the network while ensuring the reconstruction effect. We further combine the previous steps to get what we called attention thin volume. Quantitative and qualitative experiments are presented to demonstrate the performance of our model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 71.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 89.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  2. Ji, M., Gall, J., Zheng, H., Liu, Y., Fang, L.: Surfacenet: an end-to-end 3d neural network for multiview stereopsis. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2307–2315 (2017)

    Google Scholar 

  3. Yao, Y., Luo, Z., Li, S., Fang, T., Quan, L.: MVSNet: depth inference for unstructured multi-view stereo. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11212, pp. 785–801. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01237-3_47

    Chapter  Google Scholar 

  4. Cheng, S., et al.: Deep stereo using adaptive thin volume representation with uncertainty awareness. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2524–2534 (2020)

    Google Scholar 

  5. Guo, C., Szemenyei, M., Yi, Y., Wang, W., Chen, B., Fan, C.: Sa-unet: spatial attention u-net for retinal vessel segmentation. In 2020 25th International Conference on Pattern Recognition (ICPR), pp. 1236–1242. IEEE, January 2021

    Google Scholar 

  6. Huang, P.H., Matzen, K., Kopf, J., Ahuja, N., Huang, J.B.: Deepmvs: learning multi-view stereopsis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2821–2830 (2018)

    Google Scholar 

  7. Luo, K., Guan, T., Ju, L., Huang, H., Luo, Y.: P-mvsnet: learning patch-wise matching confidence aggregation for multi-view stereo. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10452–10461 (2019)

    Google Scholar 

  8. Zhang, X., Hu, Y., Wang, H., Cao, X., Zhang, B.: Long-range attention network for multi-view stereo. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 3782–3791 (2021)

    Google Scholar 

  9. Yao, Y., Luo, Z., Li, S., Shen, T., Fang, T., Quan, L.: Recurrent mvsnet for high-resolution multi-view stereo depth inference. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5525–5534 (2019)

    Google Scholar 

  10. Zhang, K., Liu, M., Zhang, J., Dong, Z.: Pa-mvsnet: sparse-to-dense multi-view stereo with pyramid attention. IEEE Access 9, 27908–27915 (2021)

    Article  Google Scholar 

  11. Yang, J., Mao, W., Alvarez, J.M., Liu, M.: Cost volume pyramid based depth inference for multi-view stereo. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4877–4886 (2020)

    Google Scholar 

  12. Gu, X., Fan, Z., Zhu, S., Dai, Z., Tan, F., Tan, P.: Cascade cost volume for high-resolution multi-view stereo and stereo matching. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2495–2504 (2020)

    Google Scholar 

  13. Yi, Hongwei, Wei, Zizhuang, Ding, Mingyu, Zhang, Runze, Chen, Yisong, Wang, Guoping, Tai, Yu-Wing.: Pyramid multi-view stereo net with self-adaptive view aggregation. In: Vedaldi, Andrea, Bischof, Horst, Brox, Thomas, Frahm, Jan-Michael. (eds.) ECCV 2020. LNCS, vol. 12354, pp. 766–782. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58545-7_44

    Chapter  Google Scholar 

  14. Chen, R., Han, S., Xu, J., Su, H.: Point-based multi-view stereo network. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 1538–1547 (2019)

    Google Scholar 

  15. Xue, Y., et al.: Mvscrf: learning multi-view stereo with conditional random fields. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4312–4321 (2019)

    Google Scholar 

  16. Luo, K., Guan, T., Ju, L., Wang, Y., Chen, Z., Luo, Y.: Attention-aware multi-view stereo. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1590–1599 (2020)

    Google Scholar 

  17. Yu, A., Guo, W., Liu, B., Chen, X., Wang, X., Cao, X., Jiang, B.: Attention aware cost volume pyramid based multi-view stereo network for 3d reconstruction. ISPRS J. Photogrammetry Remote Sens. 175, 448–460 (2021)

    Article  Google Scholar 

  18. Jensen, R., Dahl, A., Vogiatzis, G., Tola, E., Aanæs, H.: Large scale multi-view stereopsis evaluation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 406–413 (2014)

    Google Scholar 

  19. Knapitsch, A., Park, J., Zhou, Q.Y., Koltun, V.: Tanks and temples: benchmarking large-scale scene reconstruction. ACM Trans. Graph. (ToG) 36(4), 1–13 (2017)

    Article  Google Scholar 

  20. Galliani, S., Lasinger, K., Schindler, K.: Massively parallel multiview stereopsis by surface normal diffusion. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 873–881 (2015)

    Google Scholar 

  21. Kazhdan, M., Bolitho, M., Hoppe, H.: Poisson surface reconstruction. In Proceedings of the Fourth Eurographics Symposium on Geometry Processing, vol. 7, June 2006

    Google Scholar 

  22. Guo, X., Yang, K., Yang, W., Wang, X., Li, H.: Group-wise correlation stereo network. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3273–3282 (2019)

    Google Scholar 

  23. Shaw, P., Uszkoreit, J., Vaswani, A.: Self-attention with relative position representations. arXiv preprint arXiv:1803.02155 (2018)

  24. Ramachandran, P., Parmar, N., Vaswani, A., Bello, I., Levskaya, A., Shlens, J.: Stand-alone self-attention in vision models. In: Advances in Neural Information Processing Systems, 32 (2019)

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank all anonymous reviewers. This work was supported by the National Key Research and Development Program of China [grant number 2021YFF0901203].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chao Xu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wan, Z., Xu, C., Hu, J., Xiao, J., Meng, Z., Chen, J. (2022). Multi-view Stereo Network with Attention Thin Volume. In: Khanna, S., Cao, J., Bai, Q., Xu, G. (eds) PRICAI 2022: Trends in Artificial Intelligence. PRICAI 2022. Lecture Notes in Computer Science, vol 13631. Springer, Cham. https://doi.org/10.1007/978-3-031-20868-3_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20868-3_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20867-6

  • Online ISBN: 978-3-031-20868-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics