[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Learned and Native Concepts in Latent Representations of Terrain Images

  • Conference paper
  • First Online:
Information and Communication Technologies in Education, Research, and Industrial Applications (ICTERI 2021)

Abstract

Research into generative representations of complex data is a rapidly expanding field in machine learning. In this work we propose and evaluate a process of production and analysis of informative low-dimensional latent representations of real-world images with neural network models of unsupervised generative learning. A model of convolutional autoencoder based on VGG-16 architecture was used to produce low-dimensional generative representations of two datasets of aerial images and the characteristics of distributions of several classes of images of terrain studied. An analysis of latent distributions of terrain classes demonstrated a landscape of compact density structures for most studied classes with good separation of concept regions. The results of this work can be used in developing methods of effective learning in problems and environments with a deficit of labeled data based on the concept-sensitive structure in the latent representations that emerges in the process of unsupervised generative self-learning.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 51.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 64.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Hornik, K., Stinchcombe, M., White, H.: Multilayer feedforward neural networks are universal approximators. Neural Netw. 2(5), 359–366 (1989)

    Article  MATH  Google Scholar 

  2. Coates, A., Lee, H., Ng, A.Y.: An analysis of single-layer networks in unsupervised feature learning. In: Proceedings of 14th International Conference on Artificial Intelligence and Statistics, Ft. Lauderdale, USA, vol. 15, pp. 215–223 (2011)

    Google Scholar 

  3. Hinton, G.E., Osindero, S., Teh, Y.W.: A fast learning algorithm for deep belief nets. Neural Comput. 18(7), 1527–1554 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  4. Welling, M., Kingma, D.P.: An introduction to variational autoencoders. Found. Trends Mach. Learn. 12(4), 307–392 (2019)

    Article  MATH  Google Scholar 

  5. Le, Q.V.: A tutorial on deep learning: autoencoders, convolutional neural networks and recurrent neural networks. Stanford University (2015)

    Google Scholar 

  6. Kavukcuoglu, K., Sermanet, P., Boureau, Y.L., Gregor, K., Mathieu, M., Cun, Y.: Learning convolutional feature hierarchies for visual recognition. In: 23rd International Conference on Neural Information Processing Systems, Vancouver, Canada, vol. 1, pp. 1090–1098 (2010)

    Google Scholar 

  7. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. https://arxiv.org/abs/1409.1556 (2014)

  8. Gondara, L.: Medical image denoising using convolutional denoising autoencoders. In: 16th IEEE International Conference on Data Mining Workshops (ICDMW), Barcelona, Spain, pp. 241–246 (2016)

    Google Scholar 

  9. Chandar, A.P.S., et al.: An autoencoder approach to learning bilingual word representations. In: 27th International Conference on Neural Information Processing Systems, Montreal, Canada, vol. 2, pp. 1853–1861 (2014)

    Google Scholar 

  10. Seddigh, N., Nandy, B., Bennett, D., Ren, Y., Dolgikh, S., et al.: A framework and system for classification of encrypted network traffic using machine learning. In: 2019 15th International Conference on Network and Service Management (CNSM-2019), pp. 1–5 (2019)

    Google Scholar 

  11. Le, Q.V., Ransato, M.A., Monga, R., et al.: Building high-level features using large scale unsupervised learning. https://arxiv.org/abs/1112.6209 (2012)

  12. Banino, A., Barry, C., Kumaran, D.: Vector-based navigation using grid-like representations in artificial agents. Nature 557, 429–433 (2018)

    Article  Google Scholar 

  13. Dolgikh, S.: Low-dimensional representations in unsupervised generative models. In: 20th International Conference Information Technologies - Applications and Theory (ITAT 2020), Slovakia, vol. 2718, pp. 239–245. CEUR-WS.org (2020)

    Google Scholar 

  14. Higgins, I., Matthey, L., Glorot, X., Pal, A., et al.: Early visual concept learning with unsupervised deep learning. https://arxiv.org/abs/1606.05579 (2016)

  15. Marfil, R., Molina-Tanco, L., Bandera, A., Rodriguez, J.A., Sandoval, F.: Pyramid segmentation algorithms revisited. Pattern Recogn. 39(8), 1430–1451 (2006)

    Article  MATH  Google Scholar 

  16. Chyrkov, A., Prystavka, P.: Suspicious object search in airborne camera video stream. In: Hu, Z., Petoukhov, S., Dychka, I., He, M. (eds.) Advances in Computer Science for Engineering and Education, vol. 754, pp. 340–348. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-91008-6_34

    Chapter  Google Scholar 

  17. Prystavka, P., Cholyshkina, O., Dolgikh, S., Karpenko, D.: Automated object recognition system based on convolutional autoencoder. In: 10th International Conference on Advanced Computer Information Technologies (ACIT-2020), Deggendorf, Germany, pp. 830–833 (2020)

    Google Scholar 

  18. Keras: The Python Deep Learning library. https://keras.io

  19. Ester, M., Kriegel, H.-P., Sander, J., et al.: A density-based algorithm for discovering clusters in large spatial databases with noise. In: 2nd International Conference on Knowledge Discovery and Data Mining (KDD-96) Portland, USA, pp. 226–231 (1996)

    Google Scholar 

  20. Fukunaga, K., Hostetler, L.D.: The estimation of the gradient of a density function, with applications in pattern recognition. IEEE Trans. Inf. Theory 21(1), 32–40 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  21. Jolliffe, I.T.: Principal Component Analysis, 2nd edn., p. 487, 28. Springer, Cham (2002). https://doi.org/10.1007/b98835

  22. Dolgikh, S.: Categorized representations and general learning. In: Aliev, R., Kacprzyk, J., Pedrycz, W., Jamshidi, M., Babanli, M., Sadikoglu, F. (eds.) 10th International Conference on Theory and Application of Soft Computing, Computing with Words and Perceptions, Prague, Czech Republic, vol. 1095, pp. 93–100. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-35249-3_11

  23. Altman, N.S.: An introduction to kernel and nearest-neighbor nonparametric regression. Am. Stat. 46(3), 175–185 (1992)

    MathSciNet  Google Scholar 

  24. Hinton, G.E., Zemel, R.S.: Autoencoders, minimum description length and Helmholtz free energy. Adv. Neural Inf. Process. Syst. 6, 3–10 (1994)

    Google Scholar 

  25. Ranzato, M.A., Boureau, Y.-L., Chopra, S., LeCun, Y.: A unified energy-based framework for unsupervised learning. In: 11th International Conference on Artificial Intelligence and Statistics (AISTATS), San Huan, Puerto Rico, vol. 2, pp. 371–379 (2007)

    Google Scholar 

  26. Zhou, X., Belkin, M.: Semi-supervised learning. In: Academic Press Library in Signal Processing, vol. 1, pp. 1239–1269. Elsevier (2014)

    Google Scholar 

  27. Yoshida, T., Ohki, K.: Natural images are reliably represented by sparse and variable populations of neurons in visual cortex. Nat. Commun. 11, 872 (2020)

    Article  Google Scholar 

  28. Bao, X., Gjorgiea, E., Shanahan, L.K., Howard, J.D., Kahnt, T., Gottfried, J.A.: Grid-like neural representations support olfactory navigation of a two-dimensional odor space. Neuron 102(5), 1066–1075 (2019)

    Article  Google Scholar 

  29. Hassabis, D., Kumaran, D., Summerfield, C., Botvinick, M.: Neuroscience inspired artificial intelligence. Neuron 95, 245–258 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Serge Dolgikh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Prystavka, P., Dolgikh, S., Cholyshkina, O., Kozachuk, O. (2022). Learned and Native Concepts in Latent Representations of Terrain Images. In: Ermolayev, V., et al. Information and Communication Technologies in Education, Research, and Industrial Applications. ICTERI 2021. Communications in Computer and Information Science, vol 1698. Springer, Cham. https://doi.org/10.1007/978-3-031-20834-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20834-8_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20833-1

  • Online ISBN: 978-3-031-20834-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics