Abstract
The analysis and classification of Alcohol Use Disorder (AUD) using non-invasive measurements, such as EEG records from the brain scalp, are of significant importance in neuroscience. Analysis and diagnosis of brain diseases associated with alcoholic subjects using EEG records remain challenging. This study proposes a graph theory-based approach for automated classification of AUD using EEG data. The metrics of the graphs are intrinsically related to the organization of the brain functionality. The main contribution of this study is to evaluate the impact of weighted graph features on AUD classifications based on EEG data. In this study, three different features (average degree, fluctuation difference, and average weighted degree) were extracted from the weighed visibility EEG graph and the performance of the proposed model was evaluated against SVM, k-NN, and Naive Bayes classifiers. The experimental results indicates that the topological features of the weighted EEG graphs supported superior classification performance (97.5%) against the other competing methods.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Diagnostic and Statistical Manual of Mental Disorders: DSM-5, 5th edn. Reference Reviews 28, 36–37 (2014)
Understanding Alcohol Use Disorder | National Institute on Alcohol Abuse and Alcoholism (NIAAA). https://www.niaaa.nih.gov/publications/brochures-and-fact-sheets/understanding-alcohol-use-disorder
Sadiq, M., Akbari, H., Siuly, S., Li, Y., Wen, P.: Alcoholic EEG signals recognition based on phase space dynamic and geometrical features. Chaos Solitons Fractals 158, 112036 (2022)
Hussain, W., Sadiq, M., Siuly, S., Rehman, A.: Epileptic seizure detection using 1 D-convolutional long short-term memory neural networks. Appl. Acoust. 177, 107941 (2021)
Şengür, D., Siuly, S.: Efficient approach for EEG-based emotion recognition. Electron. Lett. 56, 1361–1364 (2020)
Namura, I.: Alcoholic brain damage and dementia viewed by MRI, with special consideration on frontal atrophy and white matter damage in dyslipidemic patients. Psychogeriatrics 6, 119–127 (2006)
Pfefferbaum, A., Sullivan, E.: Disruption of brain white matter microstructure by excessive intracellular and extracellular fluid in alcoholism: evidence from diffusion tensor imaging. Neuropsychopharmacology 30, 423–432 (2004)
Solingapuram Sai, K., Hurley, R., Dodda, M., Taber, K.: Positron emission tomography: updates on imaging of addiction. J. Neuropsychiatry Clin. Neurosci. 31, A6-288 (2019)
Supriya, S., Siuly, S., Wang, H., Zhang, Y.: An efficient framework for the analysis of big brain signals data. In: Wang, J., Cong, G., Chen, J., Qi, J. (eds.) Databases Theory and Applications, vol. 10837, pp. 199–207. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-92013-9_16
Farsi, L., Siuly, S., Kabir, E., Wang, H.: Classification of alcoholic EEG signals using a deep learning method. IEEE Sens. J. 21, 3552–3560 (2021)
Bajaj, V., Guo, Y., Sengur, A., Siuly, S., Alcin, O.F.: A hybrid method based on time–frequency images for classification of alcohol and control EEG signals. Neural Comput. Appl. 28(12), 3717–3723 (2016). https://doi.org/10.1007/s00521-016-2276-x
Faust, O., Yu, W., Kadri, N.: Computer-based identification of normal and alcoholic EEG signals using wavelet packets and energy measures. J. Mech. Med. Biol. 13, 1350033 (2013)
Supriya, S., Siuly, S., Wang, H., Zhang, Y.: New feature extraction for automated detection of epileptic seizure using complex network framework. Appl. Acoust. 180, 108098 (2021)
Smit, D., Stam, C., Posthuma, D., Boomsma, D., de Geus, E.: Heritability of “small-world” networks in the brain: a graph theoretical analysis of resting-state EEG functional connectivity. Hum. Brain Mapp. 29, 1368–1378 (2008)
Supriya, S., Siuly, S., Wang, H., Zhang, Y.: Epilepsy detection from EEG using complex network techniques: a review. IEEE Rev. Biomed. Eng. 1 (2021)
Sporns, O.: Graph theory methods for the analysis of neural connectivity patterns. In: Kötter, R. (ed.) Neuroscience Databases, pp. 171–185. Springer, Boston (2003)
Supriya, S., Siuly, S., Wang, H., Cao, J., Zhang, Y.: Weighted visibility graph with complex network features in the detection of epilepsy. IEEE Access. 4, 6554–6566 (2016)
Supriya, S., Siuly, S., Zhang, Y.: Automatic epilepsy detection from EEG introducing a new edge weight method in the complex network. Electron. Lett. 52, 1430–1432 (2016)
Supriya, S., Siuly, S., Wang, H., Zhang, Y.: EEG sleep stages analysis and classification based on weighed complex network features. IEEE Trans. Emerging Top. Comput. Intell. 5, 236–246 (2021)
Supriya, S., Siuly, S., Wang, H., Zhang, Y.: Automated epilepsy detection techniques from electroencephalogram signals: a review study. Health Inf. Sci. Syst. 8(1), 1–15 (2020). https://doi.org/10.1007/s13755-020-00129-1
Cao, R., Wu, Z., Li, H., Xiang, J., Chen, J.: Disturbed connectivity of EEG functional networks in alcoholism: a graph-theoretic analysis. Bio-Med. Mater. Eng. 24, 2927–2936 (2014)
Zhu, G., Li, Y., Wen, P., Wang, S.: Analysis of alcoholic EEG signals based on horizontal visibility graph entropy. Brain Inform. 1(1–4), 19–25 (2014). https://doi.org/10.1007/s40708-014-0003-x
Hassan, A., Siuly, S., Zhang, Y.: Epileptic seizure detection in EEG signals using tunable-Q factor wavelet transform and bootstrap aggregating. Comput. Methods Programs Biomed. 137, 247–259 (2016)
Siuly, S., Kabir, E., Wang, H., Zhang, Y.: Exploring sampling in the detection of multicategory EEG signals. Comput. Math. Methods Med. 2015, 1–12 (2015)
Lacasa, L., Luque, B., Ballesteros, F., Luque, J., Nuño, J.: From time series to complex networks: the visibility graph. Proc. Natl. Acad. Sci. 105, 4972–4975 (2008)
Wu, J., Sun, L., Peng, D., Siuly, S.: A micro neural network for healthcare sensor data stream classification in sustainable and smart cities. Comput. Intell. Neurosci. 2022, 1–9 (2022)
Supriya, S., Wang, H., Zhuo, G., Zhang, Y.: Analyzing EEG signal data for detection of epileptic seizure: introducing weight on visibility graph with complex network feature. In: Cheema, M., Zhang, W., Chang, L. (eds.) Databases Theory and Applications, vol. 9877, pp. 56–66. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46922-5_5
Alvi, A., Siuly, S., Wang, H.: A long short-term memory based framework for early detection of mild cognitive impairment from EEG signals. IEEE Trans. Emerging Top. Comput. Intell. 1–14 (2022)
Sadiq, M.T., Siuly, S., Ur Rehman, A., Wang, H.: Auto-correlation based feature extraction approach for EEG alcoholism identification. In: Siuly, S., Wang, H., Chen, L., Guo, Y., Xing, C. (eds.) HIS 2021. LNCS, vol. 13079, pp. 47–58. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-90885-0_5
Antoniou, I., Tsompa, E.: Statistical analysis of weighted networks. Discret. Dyn. Nat. Soc. 2008, 1–16 (2008)
Jiang, W.: Time series classification: nearest neighbor versus deep learning models. SN Appl. Sci. 2(4), 1–17 (2020). https://doi.org/10.1007/s42452-020-2506-9
Wen-ge, F.: Application of SVM classifier in IR target recognition. Phys. Procedia 24, 2138–2142 (2012)
Machado, J., Balbinot, A.: Executed movement using EEG signals through a naive Bayes classifier. Micromachines 5, 1082–1105 (2014)
EEG Database. http://kdd.ics.uci.edu/databases/eeg/eeg.data.html
Zhang, X., Begleiter, H., Porjesz, B., Wang, W., Litke, A.: Event related potentials during object recognition tasks. Brain Res. Bull. 38, 531–538 (1995)
Tang, X., et al.: New approach to epileptic diagnosis using visibility graph of high-frequency signal. Clin. EEG Neurosci. 44, 150–156 (2013)
Kannathal, N., Acharya, U., Lim, C., Sadasivan, P.: Characterization of EEG—a comparative study. Comput. Methods Programs Biomed. 80, 17–23 (2005)
Ehlers, C., Havstad, J., Prichard, D., Theiler, J.: Low doses of ethanol reduce evidence for nonlinear structure in brain activity. J. Neurosci. 18, 7474–7486 (1998)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Supriya, S., Jan, T., Sidnal, N., Thompson-Whiteside, S. (2022). Alcoholic EEG Data Classification Using Weighted Graph-Based Technique. In: Traina, A., Wang, H., Zhang, Y., Siuly, S., Zhou, R., Chen, L. (eds) Health Information Science. HIS 2022. Lecture Notes in Computer Science, vol 13705. Springer, Cham. https://doi.org/10.1007/978-3-031-20627-6_25
Download citation
DOI: https://doi.org/10.1007/978-3-031-20627-6_25
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-20626-9
Online ISBN: 978-3-031-20627-6
eBook Packages: Computer ScienceComputer Science (R0)