[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

A Set-Theoretic Representation of Algebraic L-domains

  • Conference paper
  • First Online:
Theory and Applications of Models of Computation (TAMC 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13571))

Abstract

In this paper, we aim to establish a concrete representation, as a family of sets, for every algebraic L-domain. We generalize the notion of a topped algebraic intersection structure to a locally algebraic intersection structure. Just as topped algebraic intersection structures are concrete representations of algebraic lattices, locally algebraic intersection structures are concrete representations of algebraic L-domains. This result extends the classic Stone’s representation theorem for Boolean algebras to the case of algebraic L-domains. In addition, it will be seen that many well-known representations of algebraic L-domains can be analyzed with the framework of locally algebraic intersection structures.

This work is supposed by Shandong Provincial Natural Science Foundation(ZR2022MA022).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 55.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 69.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abramsky, S.: Domain theory in logical form. Ann. Pure Appl. Logic 51, 1–77 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  2. Birkhoff, G.: Rings of sets. Duke Math. J. 3(3), 443–454 (1937)

    Article  MathSciNet  MATH  Google Scholar 

  3. Chen, Y.: Stone duality and representation of stable domain. Comput. Math. Appl. 34(1), 27–41 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  4. Chen, Y., Jung, A.: A logical approach to stable Domains. Theor. Comput. Sci. 368, 124–148 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  5. Davey, B.A., Priestly, H.A.: Introduction to Lattices and Order. Cambridge University Press, Cambridge (2002)

    Book  Google Scholar 

  6. Ganter, B., Wille, R.: Formal Concept Analysis. Springer, Heidelberg (1999). https://doi.org/10.1007/978-3-642-59830-2

    Book  MATH  Google Scholar 

  7. Gierz, G., Hofmann, K.H., Keimel, K., Lawson, J.D., Mislove, M., Scott, D.S.: Continuous Lattices and Domains. Cambridge University Press, Cambridge (2003)

    Book  MATH  Google Scholar 

  8. Guo, L., Li, Q., Yao, L.: Locally complete consistent F-augmented contexts: a category-theoretic representation of algebraic L-domains. Discrete Appl. Math. 249, 53–63 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  9. Jung, A.: Cartesian closed categories of domains. CWI Tracts, vol. 66. Centrum voor Wiskunde en Informatica, Amesterdam (1989)

    Google Scholar 

  10. Scott, D.S.: Domains for denotational semantics. Lect. Notes Comput. Sci. 140, 577–613 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  11. Spreen, D., Xu, L., Mao, X.: Information systems revisited: the general continuous case. Theor. Comput. Sci. 405, 176–187 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  12. Spreen, D.: Generalised information systems capture L-domains. Theor. Comput. Sci. 869, 1–28 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  13. Stone, M.H.: The theory of representations for Boolean algebras. Trans. Am. Math. Soc. 40, 37–111 (1936)

    MathSciNet  MATH  Google Scholar 

  14. Wang, L., Li, Q.: Representations of stably continuous semi-lattices by information systems and abstract bases. Info. Process. Lett. 165, 106036 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  15. Wang, L., Zhou, X., Li, Q.: Information systems for continuous semi-lattices. Theor. Comput. Sci. 913, 138–150 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  16. Wu, M., Guo, L., Li, Q.: A representation of L-domains by information systems. Theor. Comput. Sci. 612, 126–136 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  17. Wu, M., Guo, L., Li, Q.: New representations of algebraic domains and algebraic L-domains via closure systems. Semigroup Forum 103, 700–712 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  18. Zhang, G.-Q.: Logic of Domains. Birkhauser, Boston (1991)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Longchun Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zou, J., Zhao, Y., Miao, C., Wang, L. (2022). A Set-Theoretic Representation of Algebraic L-domains. In: Du, DZ., Du, D., Wu, C., Xu, D. (eds) Theory and Applications of Models of Computation. TAMC 2022. Lecture Notes in Computer Science, vol 13571. Springer, Cham. https://doi.org/10.1007/978-3-031-20350-3_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20350-3_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20349-7

  • Online ISBN: 978-3-031-20350-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics