Abstract
One of the many collateral effects that the entire planet has suffered with the appearance of covid-19 and the declaration of this as a pandemic, has been evidenced in the treatment of facial recognition algorithms and the variety of applications, both commercial and for exclusive use in research for this same purpose. For the time being, there are already reports of effectiveness with respect to the analysis of these algorithms and that are paving the way to understand the degree of affectation that the use of face masks can have on facial recognition processes. In this context, it is important to determine how it is possible that throughout these almost two years of confinement and use of face shields and masks, the human being, regardless of his age, has been able to maintain its advantage over artificial intelligence systems when recognizing the face of a relative, friend or simply an acquaintance; that is why, the present study aims to evaluate some face recognition systems in order to determine the main problems faced by these algorithms when recognizing a face protected with a mask.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Scientist and mathematician Woodrow Wilson Bledsoe designed a system of measurements to classify and categorize faces.
References
Mohammad, S.M.: Facial recognition technology. SSRN Electron. J. (June) (2020)
Li, L., Mu, X., Li, S., Peng, H.: A review of face recognition technology. IEEE Access 8, 139110–139120 (2020)
Al-Yazidi, S.A., Berri, J., Hassan, M.M.: Novel hybrid model for organizations’ reputation in online social networks. J. King Saud Univ. Comput. Inf. Sci. (2022)
Sirovich, L., Kirby, M.: Low-dimensional procedure for the characterization of human faces. 4(3) (1987)
Turk, M., Pentland, A.: Face recognition using eigenfaces. p. 6 (1991)
Yang, J., Hua, G.: Deep learning for video face recognition. Adv. Comput. Vis. Pattern Recogn. 209–232 (2021)
Yi, D., Lei, Z., Liao, S., Li, S.Z.: Learning Face Representation from Scratch, November 2014
Wen, Y., Zhang, K., Li, Z., Qiao, Y.: A discriminative feature learning approach for deep face recognition. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9911, pp. 499–515. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46478-7_31
Abudarham, N., Shkiller, L., Yovel, G.: Critical features for face recognition. Cognition 182, 73–83 (2019)
Calder, A.J., Keane, J., Young, A.W., Dean, M.: Configural information in facial expression perception. J. Exp. Psychol. Hum. Percept. Perform. 26(2), 527–551 (2000)
Ding, F., Peng, P., Huang, Y., Geng, M., Tian, Y.: Masked face recognition with latent part detection. In: MM 2020 - Proc. 28th ACM International Conference on Multimedia, pp. 2281–2289, October 2020
Frank, C., Nöth, E.: Optimizing eigenfaces by face masks for facial expression recognition. In: Petkov, N., Westenberg, M.A. (eds.) CAIP 2003. LNCS, vol. 2756, pp. 646–654. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45179-2_79
Brouton, L.: Cómo funciona el reconocimiento facial con máscaras facials. Blog y asesoría sobre investigación (2022). https://broutonlab.com/blog/how-facial-recognition-works-with-face-masks. Accessed 13 May 2022
Castelluccia, C., Le Métayer Inria, D., Le Métayer, D.: Impact Analysis of Facial Recognition (2020)
Jayaweera, M., Perera, H., Gunawardana, B., Manatunge, J.: Transmission of COVID-19 virus by droplets and aerosols: a critical review on the unresolved dichotomy. Environ. Res. 188 (2020)
Saib, Y.M., Pudaruth, S.: Is face recognition with masks possible? Int. J. Adv. Comput. Sci. Appl. 12(7), 43–50 (2021)
Deng, J., Guo, J., Xue, N., Zafeiriou, S.: ArcFace: additive angular margin loss for deep face recognition. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, vol. 2019-June, pp. 4685–4694 (2019)
Ejaz, M.S., Islam, M.R., Sifatullah, M., Sarker, A.: Implementation of principal component analysis on masked and non-masked face recognition. In: 1st International Conference on Advances in Science, Engineering and Robotics Technology 2019, ICASERT 2019, May 2019
Song, Z., Nguyen, K., Nguyen, T., Cho, C., Gao, J.: Spartan face mask detection and facial recognition system. Healthcare 10(1) (2022)
Vijitkunsawat, W., Chantngarm, P.: Study of the Performance of machine learning algorithms for face mask detection. In: CIT 2020 - 5th International Conference on Information Technology, pp. 39–43, October 2020
Alzu’bi, A., Albalas, F., Al-Hadhrami, T., Younis, L.B., Bashayreh, A.: Masked face recognition using deep learning: a review. Electron 10(21) (2021)
Patel, V.S., Nie, Z., Le, T.-N., Nguyen, T.V.: Masked face analysis via multi-task deep learning. J. Imaging 7(10) (2021)
Reconocimiento facial en tiempos de pandemia - Mobbeel. https://www.mobbeel.com/blog/reconocimiento-facial-en-tiempos-de-pandemia/. Accessed 10 June 2022
Cómo usar el reconocimiento facial con mascarilla: cuando los algoritmos se adaptan a la nueva normalidad. https://www.xataka.com/privacidad/como-usar-reconocimiento-facial-mascarilla-cuando-algoritmos-se-adaptan-a-nueva-normalidad. Accessed 10 June 2022
¿Es posibleel robo de identidad a través del reconocimiento facial ? - Revista Transformación Digital. https://www.revistatransformaciondigital.com/2021/02/13/es-posible-el-robo-de-identidad-a-traves-del-reconocimiento-facial/. Accessed 10 June 2022
Bruce, V., Young, A.: Understanding face recognition. Br. J. Psychol. 77(3), 305–327 (1986)
Carbon, C.C., Wearing face masks strongly confuses counterparts in reading emotions. Front. Psychol. 11 (2020)
Fitousi, D., Rotschild, N., Pnini, C., Azizi, O.: Understanding the impact of face masks on the processing of facial identity, emotion, age, and gender. Front. Psychol. 12, 4668 (2021)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Vásquez, S.B.R. (2022). Determination of the Factors Influencing Proper Face Recognition in Faces Protected by Face Masks, an Analysis of Their Algorithms and the Factors Affecting Recognition Success. In: Guarda, T., Portela, F., Augusto, M.F. (eds) Advanced Research in Technologies, Information, Innovation and Sustainability. ARTIIS 2022. Communications in Computer and Information Science, vol 1675. Springer, Cham. https://doi.org/10.1007/978-3-031-20319-0_29
Download citation
DOI: https://doi.org/10.1007/978-3-031-20319-0_29
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-20318-3
Online ISBN: 978-3-031-20319-0
eBook Packages: Computer ScienceComputer Science (R0)