[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Determination of the Factors Influencing Proper Face Recognition in Faces Protected by Face Masks, an Analysis of Their Algorithms and the Factors Affecting Recognition Success

  • Conference paper
  • First Online:
Advanced Research in Technologies, Information, Innovation and Sustainability (ARTIIS 2022)

Abstract

One of the many collateral effects that the entire planet has suffered with the appearance of covid-19 and the declaration of this as a pandemic, has been evidenced in the treatment of facial recognition algorithms and the variety of applications, both commercial and for exclusive use in research for this same purpose. For the time being, there are already reports of effectiveness with respect to the analysis of these algorithms and that are paving the way to understand the degree of affectation that the use of face masks can have on facial recognition processes. In this context, it is important to determine how it is possible that throughout these almost two years of confinement and use of face shields and masks, the human being, regardless of his age, has been able to maintain its advantage over artificial intelligence systems when recognizing the face of a relative, friend or simply an acquaintance; that is why, the present study aims to evaluate some face recognition systems in order to determine the main problems faced by these algorithms when recognizing a face protected with a mask.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 71.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 89.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Scientist and mathematician Woodrow Wilson Bledsoe designed a system of measurements to classify and categorize faces.

References

  1. Mohammad, S.M.: Facial recognition technology. SSRN Electron. J. (June) (2020)

    Google Scholar 

  2. Li, L., Mu, X., Li, S., Peng, H.: A review of face recognition technology. IEEE Access 8, 139110–139120 (2020)

    Article  Google Scholar 

  3. Al-Yazidi, S.A., Berri, J., Hassan, M.M.: Novel hybrid model for organizations’ reputation in online social networks. J. King Saud Univ. Comput. Inf. Sci. (2022)

    Google Scholar 

  4. Sirovich, L., Kirby, M.: Low-dimensional procedure for the characterization of human faces. 4(3) (1987)

    Google Scholar 

  5. Turk, M., Pentland, A.: Face recognition using eigenfaces. p. 6 (1991)

    Google Scholar 

  6. Yang, J., Hua, G.: Deep learning for video face recognition. Adv. Comput. Vis. Pattern Recogn. 209–232 (2021)

    Google Scholar 

  7. Yi, D., Lei, Z., Liao, S., Li, S.Z.: Learning Face Representation from Scratch, November 2014

    Google Scholar 

  8. Wen, Y., Zhang, K., Li, Z., Qiao, Y.: A discriminative feature learning approach for deep face recognition. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9911, pp. 499–515. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46478-7_31

    Chapter  Google Scholar 

  9. Abudarham, N., Shkiller, L., Yovel, G.: Critical features for face recognition. Cognition 182, 73–83 (2019)

    Article  Google Scholar 

  10. Calder, A.J., Keane, J., Young, A.W., Dean, M.: Configural information in facial expression perception. J. Exp. Psychol. Hum. Percept. Perform. 26(2), 527–551 (2000)

    Article  Google Scholar 

  11. Ding, F., Peng, P., Huang, Y., Geng, M., Tian, Y.: Masked face recognition with latent part detection. In: MM 2020 - Proc. 28th ACM International Conference on Multimedia, pp. 2281–2289, October 2020

    Google Scholar 

  12. Frank, C., Nöth, E.: Optimizing eigenfaces by face masks for facial expression recognition. In: Petkov, N., Westenberg, M.A. (eds.) CAIP 2003. LNCS, vol. 2756, pp. 646–654. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45179-2_79

    Chapter  Google Scholar 

  13. Brouton, L.: Cómo funciona el reconocimiento facial con máscaras facials. Blog y asesoría sobre investigación (2022). https://broutonlab.com/blog/how-facial-recognition-works-with-face-masks. Accessed 13 May 2022

  14. Castelluccia, C., Le Métayer Inria, D., Le Métayer, D.: Impact Analysis of Facial Recognition (2020)

    Google Scholar 

  15. Jayaweera, M., Perera, H., Gunawardana, B., Manatunge, J.: Transmission of COVID-19 virus by droplets and aerosols: a critical review on the unresolved dichotomy. Environ. Res. 188 (2020)

    Google Scholar 

  16. Saib, Y.M., Pudaruth, S.: Is face recognition with masks possible? Int. J. Adv. Comput. Sci. Appl. 12(7), 43–50 (2021)

    Google Scholar 

  17. Deng, J., Guo, J., Xue, N., Zafeiriou, S.: ArcFace: additive angular margin loss for deep face recognition. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, vol. 2019-June, pp. 4685–4694 (2019)

    Google Scholar 

  18. Ejaz, M.S., Islam, M.R., Sifatullah, M., Sarker, A.: Implementation of principal component analysis on masked and non-masked face recognition. In: 1st International Conference on Advances in Science, Engineering and Robotics Technology 2019, ICASERT 2019, May 2019

    Google Scholar 

  19. Song, Z., Nguyen, K., Nguyen, T., Cho, C., Gao, J.: Spartan face mask detection and facial recognition system. Healthcare 10(1) (2022)

    Google Scholar 

  20. Vijitkunsawat, W., Chantngarm, P.: Study of the Performance of machine learning algorithms for face mask detection. In: CIT 2020 - 5th International Conference on Information Technology, pp. 39–43, October 2020

    Google Scholar 

  21. Alzu’bi, A., Albalas, F., Al-Hadhrami, T., Younis, L.B., Bashayreh, A.: Masked face recognition using deep learning: a review. Electron 10(21) (2021)

    Google Scholar 

  22. Patel, V.S., Nie, Z., Le, T.-N., Nguyen, T.V.: Masked face analysis via multi-task deep learning. J. Imaging 7(10) (2021)

    Google Scholar 

  23. Reconocimiento facial en tiempos de pandemia - Mobbeel. https://www.mobbeel.com/blog/reconocimiento-facial-en-tiempos-de-pandemia/. Accessed 10 June 2022

  24. Cómo usar el reconocimiento facial con mascarilla: cuando los algoritmos se adaptan a la nueva normalidad. https://www.xataka.com/privacidad/como-usar-reconocimiento-facial-mascarilla-cuando-algoritmos-se-adaptan-a-nueva-normalidad. Accessed 10 June 2022

  25. ¿Es posibleel robo de identidad a través del reconocimiento facial ? - Revista Transformación Digital. https://www.revistatransformaciondigital.com/2021/02/13/es-posible-el-robo-de-identidad-a-traves-del-reconocimiento-facial/. Accessed 10 June 2022

  26. Bruce, V., Young, A.: Understanding face recognition. Br. J. Psychol. 77(3), 305–327 (1986)

    Article  Google Scholar 

  27. Carbon, C.C., Wearing face masks strongly confuses counterparts in reading emotions. Front. Psychol. 11 (2020)

    Google Scholar 

  28. Fitousi, D., Rotschild, N., Pnini, C., Azizi, O.: Understanding the impact of face masks on the processing of facial identity, emotion, age, and gender. Front. Psychol. 12, 4668 (2021)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shendry Balmore Rosero Vásquez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Vásquez, S.B.R. (2022). Determination of the Factors Influencing Proper Face Recognition in Faces Protected by Face Masks, an Analysis of Their Algorithms and the Factors Affecting Recognition Success. In: Guarda, T., Portela, F., Augusto, M.F. (eds) Advanced Research in Technologies, Information, Innovation and Sustainability. ARTIIS 2022. Communications in Computer and Information Science, vol 1675. Springer, Cham. https://doi.org/10.1007/978-3-031-20319-0_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20319-0_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20318-3

  • Online ISBN: 978-3-031-20319-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics