Abstract
Electroencephalogram (EEG) has drawn increasing attention in biometric recognition field as an emerging high-security biometric. However, personal EEG varies significantly with time and subjects’ mental state, which needs to adjust or add new data and subjects to the original EEG identity database. In such cases, retraining of model leads to high computational cost and transfer learning sometimes does not work well. To address the incremental EEG biometric recognition problem, we proposed a novel method to implement incremental verification and identification using short-time EEG signals of resting state based on a specially designed EEG Relation Network (EEG-RN). The template comparison mechanism in EEG-RN has enabled incremental identification of unseen subjects. In the proposed network, an embedding module is designed to extract discriminant features of inter-subject samples. A relation module computes the similarities between the template samples and the test samples to determine the identification label. Template matching and fine-tuning were employed in the experiments to verify and classify unseen subjects with the model trained on the original dataset. We evaluated EEG-RN on public dataset and the results show that the proposed method can effectively learn efficient features from multiple-subject recognition and improve the practicability of EEG biometric recognition system.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Poulos, M., Rangoussi, M., Chrissikopoulos, V.: Person identification based on parametric processing of the EEG. In: IEEE International Conference on Electronics, Circuits and Systems, pp. 283–286 (1999)
Choi, G.Y., Choi, S.I., Hwang, H J..: Individual identification based on resting-state EEG. In: International Conference on Brain-Computer Interface (BCI), pp. 1–4 (2018)
Mohammadi, G., Shoushtari, P., Molaee-Ardekani, B.: Person identification by using AR model for EEG signals. In: World academy of science engineering & technology (2006)
Nguyen, P., Tran, D., Huang, X.: A proposed feature extraction method for EEG-based person identification. In: Proceedings on the International Conference on Artificial Intelligence, p. 1 (2012)
Kostílek, M., Št'astný, J.: EEG biometric identification: repeatability and influence of movement-related EEG. In: International Conference on Applied Electronics, pp. 147–150 (2012)
Mao, Z., Yao, W.X., Huang, Y.: EEG-based biometric identification with deep learning. In: International IEEE/EMBS Conference on Neural Engineering. pp. 609–612 (2017)
Sun, Y., Lo, F.P.W., Lo, B.: EEG-based user identification system using 1D-convolutional long short-term memory neural networks. Expert Syst. Appl. 125, 259–267 (2019)
Maiorana, E.: Transfer learning for EEG-based biometric verification. In: IEEE International Conference on Bioinformatics and Biomedicine, pp. 3656–3661. IEEE (2021)
Sung, F., Yang, Y., Zhang, L.: Learning to compare: relation network for few-shot learning. In : Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 1199–1208 (2018)
Schirrmeister, R.T., Springenberg, J.T., Fiederer, L.D.J.: Deep learning with convolutional neural networks for EEG decoding and visualization. Hum. Brain Mapp. 38, 5391–5420 (2017)
Das, B.B., Kumar, P., Kar, D.: A spatio-temporal model for EEG-based person identification. Multimedia Tools and Applications 78, 28157–28177 (2019)
Maiorana, E.: Learning deep features for task-independent EEG-based biometric verification. Pattern Recogn. Lett. 143, 122–129 (2021)
Acknowledgments
This work is supported by National Natural Science Foundation of China under Grant No. 61876147.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Kang, J., Lu, N., Niu, X. (2022). Incremental EEG Biometric Recognition Based on EEG Relation Network. In: Deng, W., et al. Biometric Recognition. CCBR 2022. Lecture Notes in Computer Science, vol 13628. Springer, Cham. https://doi.org/10.1007/978-3-031-20233-9_43
Download citation
DOI: https://doi.org/10.1007/978-3-031-20233-9_43
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-20232-2
Online ISBN: 978-3-031-20233-9
eBook Packages: Computer ScienceComputer Science (R0)