[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

DCCF: Deep Comprehensible Color Filter Learning Framework for High-Resolution Image Harmonization

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 (ECCV 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13667))

Included in the following conference series:

Abstract

Image color harmonization algorithm aims to automatically match the color distribution of foreground and background images captured in different conditions. Previous deep learning based models neglect two issues that are critical for practical applications, namely high resolution (HR) image processing and model comprehensibility. In this paper, we propose a novel Deep Comprehensible Color Filter (DCCF) learning framework for high-resolution image harmonization. Specifically, DCCF first downsamples the original input image to its low-resolution (LR) counter-part, then learns four human comprehensible neural filters (i.e. hue, saturation, value and attentive rendering filters) in an end-to-end manner, finally applies these filters to the original input image to get the harmonized result. Benefiting from the comprehensible neural filters, we could provide a simple yet efficient handler for users to cooperate with deep model to get the desired results with very little effort when necessary. Extensive experiments demonstrate the effectiveness of DCCF learning framework and it outperforms state-of-the-art post-processing method on iHarmony4 dataset on images’ full-resolutions by \(7.63\%\) and \(1.69\%\) relative improvements on MSE and PSNR, respectively. Our code is available at https://github.com/rockeyben/DCCF.

B. Xue—Finish this work during an internship at Alibaba Group.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 79.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 99.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://github.com/rockeyben/DCCF.

References

  1. Chen, B.C., Kae, A.: Toward realistic image compositing with adversarial learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 8415–8424 (2019)

    Google Scholar 

  2. Chen, J., Adams, A., Wadhwa, N., Hasinoff, S.W.: Bilateral guided upsampling. ACM Trans. Graph. (TOG) 35(6), 1–8 (2016)

    Article  Google Scholar 

  3. Cohen-Or, D., Sorkine, O., Gal, R., Leyvand, T., Xu, Y.Q.: Color harmonization. In: ACM SIGGRAPH, pp. 624–630 (2006)

    Google Scholar 

  4. Cong, W., Niu, L., Zhang, J., Liang, J., Zhang, L.: Bargainnet: background-guided domain translation for image harmonization. In: IEEE International Conference on Multimedia and Expo (ICME), pp. 1–6 (2021)

    Google Scholar 

  5. Cong, W., et al.: High-resolution image harmonization via collaborative dual transformations. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 18470–18479 (2022)

    Google Scholar 

  6. Cong, W., et al.: Dovenet: deep image harmonization via domain verification. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 8394–8403 (2020)

    Google Scholar 

  7. Cun, X., Pun, C.M.: Improving the harmony of the composite image by spatial-separated attention module. IEEE Trans. Image Process. (TIP) 29, 4759–4771 (2020)

    Article  MATH  Google Scholar 

  8. Gharbi, M., Chen, J., Barron, J.T., Hasinoff, S.W., Durand, F.: Deep bilateral learning for real-time image enhancement. ACM Trans. Graph. (TOG) 36(4), 1–12 (2017)

    Article  Google Scholar 

  9. Gharbi, M., Shih, Y., Chaurasia, G., Ragan-Kelley, J., Paris, S., Durand, F.: Transform recipes for efficient cloud photo enhancement. ACM Trans. Graph. (TOG) 34(6), 1–12 (2015)

    Article  Google Scholar 

  10. Guo, C., et al.: Zero-reference deep curve estimation for low-light image enhancement, pp. 1780–1789 (2020)

    Google Scholar 

  11. Guo, Z., Zheng, H., Jiang, Y., Gu, Z., Zheng, B.: Intrinsic image harmonization. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 16367–16376 (2021)

    Google Scholar 

  12. Haeberli, P.: Matrix operations for image processing. Grafica Obscura website (1993). http://graficaobscura.com/matrix/index.html

  13. Hao, G., Iizuka, S., Fukui, K.: Image harmonization with attention-based deep feature modulation. In: British Machine Vision Conference (BMVC) (2020)

    Google Scholar 

  14. He, K., Sun, J., Tang, X.: Guided image filtering. IEEE Trans. Pattern Anal. Mach. Intell. (TPAMI) 35(6), 1397–1409 (2013)

    Article  Google Scholar 

  15. Hu, Y., He, H., Xu, C., Wang, B., Lin, S.: Exposure: a white-box photo post-processing framework. ACM Trans. Graph. (TOG) 37(2), 26 (2018)

    Article  Google Scholar 

  16. Isola, P., Zhu, J.Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1125–1134 (2017)

    Google Scholar 

  17. Jia, J., Sun, J., Tang, C.K., Shum, H.Y.: Drag-and-drop pasting. ACM Trans. Graph. (TOG) 25(3), 631–637 (2006)

    Article  Google Scholar 

  18. Jiang, Y., et al.: SSH: a self-supervised framework for image harmonization. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pp. 4832–4841 (2021)

    Google Scholar 

  19. Kim, B., Ponce, J., Ham, B.: Deformable kernel networks for guided depth map upsampling. CoRR abs/1903.11286 (2019)

    Google Scholar 

  20. Ling, J., Xue, H., Song, L., Xie, R., Gu, X.: Region-aware adaptive instance normalization for image harmonization. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 9361–9370, June 2021

    Google Scholar 

  21. Paszke, A., et al.: Pytorch: an imperative style, high-performance deep learning library. In: Advances in Neural Information Processing Systems (NeurIPS), vol. 32, pp. 8026–8037 (2019)

    Google Scholar 

  22. Pérez, P., Gangnet, M., Blake, A.: Poisson image editing. In: ACM SIGGRAPH, pp. 313–318 (2003)

    Google Scholar 

  23. Pitié, F., Kokaram, A.: The linear monge-kantorovitch linear colour mapping for example-based colour transfer. In: Proceedings of the European Conference on Visual Media Production (CVMP), pp. 1–9 (2007)

    Google Scholar 

  24. Pitie, F., Kokaram, A.C., Dahyot, R.: N-dimensional probability density function transfer and its application to color transfer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), vol. 2, pp. 1434–1439 (2005)

    Google Scholar 

  25. Reinhard, E., Adhikhmin, M., Gooch, B., Shirley, P.: Color transfer between images. IEEE Comput. Graph. Appl. (CG &A) 21(5), 34–41 (2001)

    Article  Google Scholar 

  26. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  27. Shi, J., Xu, N., Xu, Y., Bui, T., Dernoncourt, F., Xu, C.: Learning by planning: language-guided global image editing. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 13590–13599 (2021)

    Google Scholar 

  28. Sofiiuk, K., Popenova, P., Konushin, A.: Foreground-aware semantic representations for image harmonization. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), pp. 1620–1629 (2021)

    Google Scholar 

  29. Sunkavalli, K., Johnson, M.K., Matusik, W., Pfister, H.: Multi-scale image harmonization. ACM Trans. Graph. (TOG) 29(4), 1–10 (2010)

    Article  Google Scholar 

  30. Tao, M.W., Johnson, M.K., Paris, S.: Error-tolerant image compositing. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6311, pp. 31–44. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15549-9_3

    Chapter  Google Scholar 

  31. Tsai, Y.H., Shen, X., Lin, Z., Sunkavalli, K., Lu, X., Yang, M.H.: Deep image harmonization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3789–3797 (2017)

    Google Scholar 

  32. Wu, H., Zheng, S., Zhang, J., Huang, K.: Fast end-to-end trainable guided filter. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1838–1847 (2018)

    Google Scholar 

  33. Zeng, H., Cai, J., Li, L., Cao, Z., Zhang, L.: Learning image-adaptive 3D lookup tables for high performance photo enhancement in real-time. IEEE Trans. Pattern Anal. Mach. Intell. (TPAMI) (2020)

    Google Scholar 

  34. Zhang, R., Isola, P., Efros, A.A., Shechtman, E., Wang, O.: The unreasonable effectiveness of deep features as a perceptual metric. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Quan Chen .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 5078 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Xue, B., Ran, S., Chen, Q., Jia, R., Zhao, B., Tang, X. (2022). DCCF: Deep Comprehensible Color Filter Learning Framework for High-Resolution Image Harmonization. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13667. Springer, Cham. https://doi.org/10.1007/978-3-031-20071-7_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20071-7_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20070-0

  • Online ISBN: 978-3-031-20071-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics