[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Learning Omnidirectional Flow in 360\(^\circ \) Video via Siamese Representation

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 (ECCV 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13668))

Included in the following conference series:

Abstract

Optical flow estimation in omnidirectional videos faces two significant issues: the lack of benchmark datasets and the challenge of adapting perspective video-based methods to accommodate the omnidirectional nature. This paper proposes the first perceptually natural-synthetic omnidirectional benchmark dataset with a 360\(^\circ \) field of view, FLOW360, with 40 different videos and 4,000 video frames. We conduct comprehensive characteristic analysis and comparisons between our dataset and existing optical flow datasets, which manifest perceptual realism, uniqueness, and diversity. To accommodate the omnidirectional nature, we present a novel Siamese representation Learning framework for Omnidirectional Flow (SLOF). We train our network in a contrastive manner with a hybrid loss function that combines contrastive loss and optical flow loss. Extensive experiments verify the proposed framework’s effectiveness and show up to 40% performance improvement over the state-of-the-art approaches. Our FLOW360 dataset and code are available at https://siamlof.github.io/.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 79.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 99.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Adobe: Mixamo. www.mixamo.com/

  2. Ahmadi, A., Patras, I.: Unsupervised convolutional neural networks for motion estimation. In: ICIP (2016)

    Google Scholar 

  3. Artizzu, C.O., Zhang, H., Allibert, G., Demonceaux, C.: OmniFlowNet: a perspective neural network adaptation for optical flow estimation in omnidirectional images. In: ICPR (2021)

    Google Scholar 

  4. Azevedo, R., Birkbeck, N., Simone, F., Janatra, I., Adsumilli, B., Frossard, P.: Visual distortions in 360-degree videos. TCSVT 2019(8), 2524–2537 (2020)

    Google Scholar 

  5. Bailer, C., Taetz, B., Stricker, D.: Flow fields: dense correspondence fields for highly accurate large displacement optical flow estimation. In: ICCV (2015)

    Google Scholar 

  6. Baker, S., Roth, S., Scharstein, D., Black, M.J., Lewis, J., Szeliski, R.: A database and evaluation methodology for optical flow. In: ICCV (2007)

    Google Scholar 

  7. Barron, J.L., Fleet, D.J., Beauchemin, S.S.: Performance of optical flow techniques. IJCV 12(1), 43–77 (1994)

    Article  Google Scholar 

  8. Bertinetto, L., Valmadre, J., Henriques, J.F., Vedaldi, A., Torr, P.H.S.: Fully-convolutional Siamese networks for object tracking. In: Hua, G., Jégou, H. (eds.) ECCV 2016. LNCS, vol. 9914, pp. 850–865. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-48881-3_56

    Chapter  Google Scholar 

  9. Bhandari, K., Zong, Z., Yan, Y.: Revisiting optical flow estimation in 360 videos. In: ICPR (2021)

    Google Scholar 

  10. Blender: https://www.blender.org/

  11. Boomsma, W., Frellsen, J.: Spherical convolutions and their application in molecular modelling. In: NeurIPS (2017)

    Google Scholar 

  12. Bromley, J., et al.: Signature verification using a “Siamese” time delay neural network. IJPRAI 7(04), 669–688 (1993)

    Google Scholar 

  13. Brox, T., Bruhn, A., Papenberg, N., Weickert, J.: High accuracy optical flow estimation based on a theory for warping. In: Pajdla, T., Matas, J. (eds.) ECCV 2004. LNCS, vol. 3024, pp. 25–36. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24673-2_3

    Chapter  Google Scholar 

  14. Brox, T., Malik, J.: Large displacement optical flow: descriptor matching in variational motion estimation. TPAMI 33(3), 500–513 (2010)

    Article  Google Scholar 

  15. Butler, D.J., Wulff, J., Stanley, G.B., Black, M.J.: A naturalistic open source movie for optical flow evaluation. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7577, pp. 611–625. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33783-3_44

    Chapter  Google Scholar 

  16. Chen, Q., Koltun, V.: Full flow: optical flow estimation by global optimization over regular grids. In: CVPR (2016)

    Google Scholar 

  17. Chen, X., He, K.: Exploring simple Siamese representation learning. In: CVPR (2021)

    Google Scholar 

  18. Cohen, T.S., Geiger, M., Koehler, J., Welling, M.: Spherical CNNs. arXiv (2018)

    Google Scholar 

  19. Coors, B., Condurache, A.P., Geiger, A.: SphereNet: learning spherical representations for detection and classification in omnidirectional images. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11213, pp. 525–541. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01240-3_32

    Chapter  Google Scholar 

  20. Demonceaux, C., Kachi-Akkouche, D.: Optical flow estimation in omnidirectional images using wavelet approach. In: CVPRW (2003)

    Google Scholar 

  21. Dosovitskiy, A., et al.: FlowNet: learning optical flow with convolutional networks. In: ICCV (2015)

    Google Scholar 

  22. Eder, M., Shvets, M., Lim, J., Frahm, J.M.: Tangent images for mitigating spherical distortion. In: CVPR (2020)

    Google Scholar 

  23. Esteves, C., Allen-Blanchette, C., Makadia, A., Daniilidis, K.: Learning SO(3) equivariant representations with spherical CNNs. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11217, pp. 54–70. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01261-8_4

    Chapter  Google Scholar 

  24. Feng, B.Y., Yao, W., Liu, Z., Varshney, A.: Deep depth estimation on 360\(^{\circ }\) images with a double quaternion loss. In: 3DV (2020)

    Google Scholar 

  25. Fernandez-Labrador, C., Facil, J.M., Perez-Yus, A., Demonceaux, C., Civera, J., Guerrero, J.J.: Corners for layout: end-to-end layout recovery from 360 images. RA-L 5(2), 1255–1262 (2020)

    Google Scholar 

  26. Field, D.J.: Relations between the statistics of natural images and the response properties of cortical cells. Josa a 4(12), 2379–2394 (1987)

    Article  Google Scholar 

  27. Garg, R., Roussos, A., Agapito, L.: A variational approach to video registration with subspace constraints. IJCV 104(3), 286–314 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  28. Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: the kitti dataset. IJRR 32(11), 1231–1237 (2013)

    Google Scholar 

  29. Geiger, A., Lenz, P., Urtasun, R.: Are we ready for autonomous driving? The kitti vision benchmark suite. In: CVPR (2012)

    Google Scholar 

  30. Geyer, C., Daniilidis, K.: A unifying theory for central panoramic systems and practical implications. In: Vernon, D. (ed.) ECCV 2000. LNCS, vol. 1843, pp. 445–461. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-45053-X_29

    Chapter  Google Scholar 

  31. Goralczyk, A.: Nishita sky demo (2020), creative Commons CC0 (Public Domain) - Blender Studio - cloud.blender.org

    Google Scholar 

  32. Horn, B.K., Schunck, B.G.: Determining optical flow. AI 17(1–3), 185–203 (1981)

    MATH  Google Scholar 

  33. Horn, B., Schunck, B.: Techniques and applications of image understanding (1981)

    Google Scholar 

  34. Hui, T.W., Tang, X., Loy, C.C.: LiteFlowNet: a lightweight convolutional neural network for optical flow estimation. In: CVPR (2018)

    Google Scholar 

  35. Hui, T.W., Tang, X., Loy, C.C.: A lightweight optical flow CNN -revisiting data fidelity and regularization. TPAMI 43(8), 2555–2569 (2021)

    Article  Google Scholar 

  36. Hulle, S.V.: Bcon19 (2019), 2019 Blender Conference - cloud.blender.org

    Google Scholar 

  37. Hur, J., Roth, S.: MirrorFlow: exploiting symmetries in joint optical flow and occlusion estimation. In: ICCV (2017)

    Google Scholar 

  38. Ilg, E., Mayer, N., Saikia, T., Keuper, M., Dosovitskiy, A., Brox, T.: FlowNet 2.0: evolution of optical flow estimation with deep networks. In: CVPR (2017)

    Google Scholar 

  39. Yu, J.J., Harley, A.W., Derpanis, K.G.: Back to basics: unsupervised learning of optical flow via brightness constancy and motion smoothness. In: Hua, G., Jégou, H. (eds.) ECCV 2016. LNCS, vol. 9915, pp. 3–10. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-49409-8_1

    Chapter  Google Scholar 

  40. Jiang, S., Campbell, D., Lu, Y., Li, H., Hartley, R.: Learning to estimate hidden motions with global motion aggregation. arXiv (2021)

    Google Scholar 

  41. Liu, C., Freeman, W.T., Adelson, E.H., Weiss, Y.: Human-assisted motion annotation. In: CVPR (2008)

    Google Scholar 

  42. Liu, P., Lyu, M., King, I., Xu, J.: SelFlow: self-supervised learning of optical flow. In: CVPR (2019)

    Google Scholar 

  43. Lucas, B.D., Kanade, T.: An iterative image registration technique with an application to stereo vision. In: IJCAI, vol. 2 (1981)

    Google Scholar 

  44. McCane, B., Novins, K., Crannitch, D., Galvin, B.: On benchmarking optical flow. CVIU 84(1) (2001)

    Google Scholar 

  45. Meister, S., Hur, J., Roth, S.: Unflow: unsupervised learning of optical flow with a bidirectional census loss. In: AAAI (2018)

    Google Scholar 

  46. Meister, S., Jähne, B., Kondermann, D.: Outdoor stereo camera system for the generation of real-world benchmark data sets. Opt. Eng. 51(2), 021107 (2012)

    Article  Google Scholar 

  47. Menze, M., Geiger, A.: Object scene flow for autonomous vehicles. In: CVPR (2015)

    Google Scholar 

  48. Menze, M., Heipke, C., Geiger, A.: Discrete optimization for optical flow. In: GCPR (2015)

    Google Scholar 

  49. Otte, M., Nagel, H.-H.: Optical flow estimation: advances and comparisons. In: Eklundh, J.-O. (ed.) ECCV 1994. LNCS, vol. 800, pp. 49–60. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-57956-7_5

    Chapter  Google Scholar 

  50. Ranjan, A., Black, M.J.: Optical flow estimation using a spatial pyramid network. In: CVPR (2017)

    Google Scholar 

  51. Seidel, R., Apitzsch, A., Hirtz, G.: OmniFlow: human omnidirectional optical flow. In: CVPR (2021)

    Google Scholar 

  52. Shakernia, O., Vidal, R., Sastry, S.: Omnidirectional egomotion estimation from back-projection flow. In: CVPRW (2003)

    Google Scholar 

  53. Simoncelli, E.P., Olshausen, B.A.: Natural image statistics and neural representation. Annu. Rev. Neurosci. 24(1), 1193–1216 (2001)

    Article  Google Scholar 

  54. Sketchfab. https://sketchfab.com/

  55. Steinbrücker, F., Pock, T., Cremers, D.: Large displacement optical flow computation without warping. In: ICCV (2009)

    Google Scholar 

  56. Su, Y.C., Grauman, K.: Learning spherical convolution for fast features from 360\(^{\circ }\) imagery. In: NeurIPS (2017)

    Google Scholar 

  57. Su, Y.C., Grauman, K.: Kernel transformer networks for compact spherical convolution. In: CVPR (2019)

    Google Scholar 

  58. Sun, D., Yang, X., Liu, M.Y., Kautz, J.: Models matter, so does training: an empirical study of CNNs for optical flow estimation. TPAMI 42(6), 1408–1423 (2019)

    Article  Google Scholar 

  59. Taigman, Y., Yang, M., Ranzato, M., Wolf, L.: DeepFace: closing the gap to human-level performance in face verification. In: CVPR (2014)

    Google Scholar 

  60. Teed, Z., Deng, J.: RAFT: recurrent all-pairs field transforms for optical flow. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12347, pp. 402–419. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58536-5_24

    Chapter  Google Scholar 

  61. Teney, D., Hebert, M.: Learning to extract motion from videos in convolutional neural networks. In: ACCV (2016)

    Google Scholar 

  62. Tran, D., Bourdev, L., Fergus, R., Torresani, L., Paluri, M.: Deep end2end voxel2voxel prediction. In: CVPRW (2016)

    Google Scholar 

  63. Turbosquid: https://www.turbosquid.com

  64. Wang, R., Geraghty, D., Matzen, K., Szeliski, R., Frahm, J.M.: VPLNet: deep single view normal estimation with vanishing points and lines. In: CVPR (2020)

    Google Scholar 

  65. Weinzaepfel, P., Revaud, J., Harchaoui, Z., Schmid, C.: DeepFlow: large displacement optical flow with deep matching. In: ICCV (2013)

    Google Scholar 

  66. Woliński, M.: City - 3d model, sketchfab.com

    Google Scholar 

  67. Wulff, J., Black, M.J.: Efficient sparse-to-dense optical flow estimation using a learned basis and layers. In: CVPR (2015)

    Google Scholar 

  68. Zhang, Z., Xu, Y., Yu, J., Gao, S.: Saliency detection in 360\(^\circ \) videos. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11211, pp. 504–520. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01234-2_30

    Chapter  Google Scholar 

  69. Zhao, S., Sheng, Y., Dong, Y., Chang, E.I., Xu, Y., et al.: MaskFlowNet: asymmetric feature matching with learnable occlusion mask. In: CVPR (2020)

    Google Scholar 

  70. Zioulis, N., Karakottas, A., Zarpalas, D., Daras, P.: OmniDepth: dense depth estimation for indoors spherical panoramas. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11210, pp. 453–471. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01231-1_28

    Chapter  Google Scholar 

Download references

Acknowledgements

This research was partially supported by NSF CNS-1908658, NeTS-2109982 and the gift donation from Cisco. This article solely reflects the opinions and conclusions of its authors and not the funding agents.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Yan .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 11412 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bhandari, K., Duan, B., Liu, G., Latapie, H., Zong, Z., Yan, Y. (2022). Learning Omnidirectional Flow in 360\(^\circ \) Video via Siamese Representation. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13668. Springer, Cham. https://doi.org/10.1007/978-3-031-20074-8_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20074-8_32

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20073-1

  • Online ISBN: 978-3-031-20074-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics