Abstract
Fitting parametric models of human bodies, hands or faces to sparse input signals in an accurate, robust, and fast manner has the promise of significantly improving immersion in AR and VR scenarios. A common first step in systems that tackle these problems is to regress the parameters of the parametric model directly from the input data. This approach is fast, robust, and is a good starting point for an iterative minimization algorithm. The latter searches for the minimum of an energy function, typically composed of a data term and priors that encode our knowledge about the problem’s structure. While this is undoubtedly a very successful recipe, priors are often hand defined heuristics and finding the right balance between the different terms to achieve high quality results is a non-trivial task. Furthermore, converting and optimizing these systems to run in a performant way requires custom implementations that demand significant time investments from both engineers and domain experts. In this work, we build upon recent advances in learned optimization and propose an update rule inspired by the classic Levenberg-Marquardt algorithm. We show the effectiveness of the proposed neural optimizer on three problems, 3D body estimation from a head-mounted device, 3D body estimation from sparse 2D keypoints and face surface estimation from dense 2D landmarks. Our method can easily be applied to new model fitting problems and offers a competitive alternative to well-tuned ‘traditional’ model fitting pipelines, both in terms of accuracy and speed.
V. Choutas—Work performed at Microsoft.
F. Bogo—Now at Meta Reality Labs Research.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Adler, J., Öktem, O.: Solving ill-posed inverse problems using iterative deep neural networks. Inverse Prob. 33(12), 124007 (2017)
Andrychowicz, M., et al.: Learning to learn by gradient descent by gradient descent. In: NeurIPS, vol. 29. Curran Associates, Inc. (2016). https://proceedings.neurips.cc/paper/2016/file/fb87582825f9d28a8d42c5e5e5e8b23d-Paper.pdf
Anguelov, D., Srinivasan, P., Koller, D., Thrun, S., Rodgers, J., Davis, J.: SCAPE: Shape Completion and Animation of People. ACM Trans. Graph. 24(3), 408–416 (2005). https://doi.org/10.1145/1073204.1073207
Baek, S., Kim, K.I., Kim, T.K.: Pushing the envelope for RGB-based dense 3D hand pose estimation via neural rendering. In: Computer Vision and Pattern Recognition (CVPR), pp. 1067–1076, June 2019
Barron, J.T.: A general and adaptive robust loss function. In: Computer Vision and Pattern Recognition (CVPR), pp. 4326–4334, June 2019
Biggs, B., Novotny, D., Ehrhardt, S., Joo, H., Graham, B., Vedaldi, A.: 3D Multi-bodies: fitting sets of plausible 3d human models to ambiguous image data. In: NeurIPS, vol. 33, pp. 20496–20507. Curran Associates, Inc. (2020). https://proceedings.neurips.cc/paper/2020/file/ebf99bb5df6533b6dd9180a59034698d-Paper.pdf
Blanz, V., Vetter, T.: A morphable model for the synthesis of 3D faces. In: ACM Transactions on Graphics (Proceedings of SIGGRAPH), pp. 187–194 (1999)
Bogo, F., Kanazawa, A., Lassner, C., Gehler, P., Romero, J., Black, M.J.: Keep it SMPL: automatic estimation of 3d human pose and shape from a single image. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9909, pp. 561–578. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46454-1_34
Boukhayma, A., Bem, R.d., Torr, P.H.: 3D hand shape and pose from images in the wild. In: Computer Vision and Pattern Recognition (CVPR), pp. 10843–10852, June 2019
Cao, Z., Hidalgo, G., Simon, T., Wei, S.E., Sheikh, Y.: Openpose: realtime multi-person 2d pose estimation using part affinity fields. Trans. Pattern Anal. Mach. Intell. (TPAMI) 43(1), 172–186 (2021)
Cho, K., et al.: Learning phrase representations using RNN encoder-decoder for statistical machine translation. In: Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 1724–1734. Association for Computational Linguistics, Doha, Qatar, October 2014. https://doi.org/10.3115/v1/D14-1179, https://aclanthology.org/D14-1179
Choi, H., Moon, G., Lee, K.M.: Beyond static features for temporally consistent 3D human pose and shape from a video. In: Computer Vision and Pattern Recognition (CVPR), pp. 1964–1973, June 2021
Choutas, V., Pavlakos, G., Bolkart, T., Tzionas, D., Black, M.J.: Monocular expressive body regression through body-driven attention. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12355, pp. 20–40. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58607-2_2
Clark, R., Bloesch, M., Czarnowski, J., Leutenegger, S., Davison, A.J.: Learning to solve nonlinear least squares for monocular stereo. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11212, pp. 291–306. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01237-3_18
Dehesa, J., Vidler, A., Padget, J., Lutteroth, C.: Grid-functioned neural networks. In: ICML, Proceedings of Machine Learning Research, vol. 139, pp. 2559–2567. PMLR, July 2021. https://proceedings.mlr.press/v139/dehesa21a.html
Dittadi, A., Dziadzio, S., Cosker, D., Lundell, B., Cashman, T.J., Shotton, J.: Full-body motion from a single head-mounted device: generating SMPL poses from partial observations. In: International Conference on Computer Vision (ICCV), pp. 11687–11697, October 2021
Dong, Z., Song, J., Chen, X., Guo, C., Hilliges, O.: Shape-aware Multi-Person Pose Estimation from Multi-View Images. In: International Conference on Computer Vision (ICCV), pp. 11158–11168, October 2021
Duchi, J., Hazan, E., Singer, Y.: Adaptive subgradient methods for online learning and stochastic optimization. J. Mach. Learn. Res. 12(7), 2121–2159 (2011)
Egger, B., et al.: 3d morphable face models - past, present and future. ACM Trans. Graph. 39(5), 1–38 (2020). https://doi.org/10.1145/3395208
Fan, T., Alwala, K.V., Xiang, D., Xu, W., Murphey, T., Mukadam, M.: Revitalizing optimization for 3d human pose and shape estimation: a sparse constrained formulation. In: International Conference on Computer Vision (ICCV), pp. 11457–11466, October 2021
Feng, Y., Choutas, V., Bolkart, T., Tzionas, D., Black, M.J.: Collaborative regression of expressive bodies using moderation. In: International Conference on 3D Vision (3DV), pp. 792–804 (2021)
Flynn, J., et al.: DeepView view synthesis with learned gradient descent. In: Computer Vision and Pattern Recognition (CVPR), pp. 2367–2376, June 2019
Guzov, V., Mir, A., Sattler, T., Pons-Moll, G.: Human POSEitioning system (HPS): 3D human pose estimation and self-localization in large scenes from body-mounted sensors. In: Computer Vision and Pattern Recognition (CVPR), pp. 4318–4329, June 2021
Hassan, M., Choutas, V., Tzionas, D., Black, M.J.: Resolving 3D human pose ambiguities with 3D scene constraints. In: International Conference on Computer Vision (ICCV), pp. 2282–2292, October 2019. https://prox.is.tue.mpg.de
Hasson, Y., et al.: Learning joint reconstruction of hands and manipulated objects. In: Computer Vision and Pattern Recognition (CVPR), pp. 11807–11816, June 2019
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Computer Vision and Pattern Recognition, CVPR, pp. 770–778, June 2016
Holden, D., Komura, T., Saito, J.: Phase-functioned neural networks for character control. ACM Trans. Graph. 36(4), 1–3 (2017). https://doi.org/10.1145/3072959.3073663, https://doi.org/10.1145/3072959.3073663
Igel, C., Toussaint, M., Weishui, W.: RPROP using the natural gradient. In: Trends and Applications in Constructive Approximation, pp. 259–272. Birkhäuser Basel, Basel (2005)
Ioffe, S., Szegedy, C.: Batch normalization training : accelerating deep network by reducing internal covariate shift. In: ICLR, pp. 448–456. PMLR (2015)
Joo, H., Neverova, N., Vedaldi, A.: Exemplar fine-tuning for 3d human pose fitting towards in-the-wild 3d human pose estimation. In: International Conference on 3D Vision (3DV), pp. 42–52 (2021)
Joo, H., Simon, T., Sheikh, Y.: Total capture: a 3D deformation model for tracking faces, hands, and bodies. In: Computer Vision and Pattern Recognition (CVPR), pp. 8320–8329, June 2018
Kanazawa, A., Black, M.J., Jacobs, D.W., Malik, J.: End-to-end recovery of human shape and pose. In: Computer Vision and Pattern Recognition (CVPR), pp. 7122–7131, June 2018
Kaufmann, M., et al.: EM-POSE: 3D human pose estimation from sparse electromagnetic trackers. In: International Conference on Computer Vision (ICCV), pp. 11510–11520, October 2021
Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: ICLR (2015). https://arxiv.org/abs/1412.6980
Kocabas, M., Athanasiou, N., Black, M.J.: VIBE: video inference for human body pose and shape estimation. In: Computer Vision and Pattern Recognition (CVPR), pp. 5252–5262, June 2020
Kocabas, M., Huang, C.H.P., Hilliges, O., Black, M.J.: PARE: Part attention regressor for 3D human body estimation. In: International Conference on Computer Vision (ICCV), pp. 11127–11137, October 2021
Kokkinos, F., Kokkinos, I.: To The Point: Correspondence-driven monocular 3D category reconstruction. In: NeurIPS (2021). https://openreview.net/forum?id=AWMU04iXQ08
Kolotouros, N., Pavlakos, G., Black, M.J., Daniilidis, K.: Learning to reconstruct 3D human pose and shape via Model-Fitting in the loop. In: International Conference on Computer Vision (ICCV), pp. 2252–2261, October 2019
Kolotouros, N., Pavlakos, G., Jayaraman, D., Daniilidis, K.: Probabilistic modeling for human mesh recovery. In: International Conference on Computer Vision (ICCV), pp. 11585–11594, October 2021
Levenberg, K.: A method for the solution of certain non-linear problems in least squares. Q. Appl. Math. 2(2), 164–168 (1944)
Li, J., Xu, C., Chen, Z., Bian, S., Yang, L., Lu, C.: HybrIK: a hybrid analytical-neural inverse kinematics solution for 3d human pose and shape estimation. In: Computer Vision and Pattern Recognition (CVPR), pp. 3383–3393, June 2021
Loper, M., Mahmood, N., Romero, J., Pons-Moll, G., Black, M.J.: SMPL: a skinned multi-person linear model. ACM Trans. Graph. (Proc. SIGGRAPH Asia). 34(6), 248:1–248:16 (2015)
Lv, Z., Dellaert, F., Rehg, J.M., Geiger, A.: Taking a deeper look at the inverse compositional algorithm. In: Computer Vision and Pattern Recognition (CVPR), pp. 4581–4590, June 2019
Mahmood, N., Ghorbani, N., Troje, N.F., Pons-Moll, G., Black, M.J.: AMASS: archive of motion capture as surface shapes. In: International Conference on Computer Vision (ICCV), pp. 5442–5451, October 2019
von Marcard, T., Henschel, R., Black, M.J., Rosenhahn, B., Pons-Moll, G.: Recovering accurate 3d human pose in the wild using IMUs and a moving camera. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11214, pp. 614–631. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01249-6_37
Marquardt, D.W.: An algorithm for least-squares estimation of nonlinear parameters. J. Soc. Ind. Appl. Math. 11(2), 431–441 (1963)
Mueller, F., et al.: Real-time pose and shape reconstruction of two interacting hands with a single depth camera. ACM Trans. Graph. 38(4), 1–13 (2019). https://doi.org/10.1145/3306346.3322958
Nair, V., Hinton, G.E.: Rectified linear units improve restricted Boltzmann machines. In: ICML (2010)
Nocedal, J., Wright, S.J.: Numerical Optimization, 2nd edn. Springer, New YorK (2006). https://doi.org/10.1007/978-0-387-40065-5
Patel, P., Huang, C.H.P., Tesch, J., Hoffmann, D.T., Tripathi, S., Black, M.J.: AGORA: avatars in geography optimized for regression analysis. In: Computer Vision and Pattern Recognition (CVPR), pp. 13463–13473, June 2021
Pavlakos, G., et al.: Expressive body capture: 3D hands, face, and body from a single image. In: Computer Vision and Pattern Recognition (CVPR), pp. 10975–10985, June 2019
Powell, M.J.D.: A hybrid method for nonlinear equations. In: Numerical Methods for Nonlinear Algebraic Equations. Gordon and Breach (1970)
Rempe, D., Birdal, T., Hertzmann, A., Yang, J., Sridhar, S., Guibas, L.J.: HuMoR: 3d human motion model for robust pose estimation. In: International Conference on Computer Vision (ICCV), pp. 11468–11479, October 2021
Romero, J., Tzionas, D., Black, M.J.: Embodied hands: modeling and capturing hands and bodies together. ACM Trans. Graph. (Proc. SIGGRAPH Asia).<error l="302" c="Undefined command " />36(6), 1–13 (2017)
Rong, Y., Shiratori, T., Joo, H.: FrankMocap: a monocular 3d whole-body pose estimation system via regression and integration. In: International Conference on Computer Vision Workshops (ICCVw), October 2021
Schmidhuber, J.: Learning to control fast-weight memories: an alternative to dynamic recurrent networks. Neural Comput. 4(1), 131–139 (1992)
Schmidhuber, J.: A neural network that embeds its own meta-levels. In: IEEE International Conference on Neural Networks, pp. 407–412. IEEE (1993)
Seeber, M., Poranne, R., Polleyfeyes, M., Oswald, M.: RealisticHands: a hybrid model for 3d hand reconstruction. In: International Conference on 3D Vision (3DV), pp. 22–31, December 2021
Shen, J., et al.: The Phong surface: efficient 3d model fitting using lifted optimization. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12346, pp. 687–703. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58452-8_40
Song, J., Chen, X., Hilliges, O.: Human body model fitting by learned gradient descent. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12365, pp. 744–760. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58565-5_44
Srivastava, R.K., Greff, K., Schmidhuber, J.: Training very deep networks. In: NeurIPS, vol. 28. Curran Associates, Inc. (2015). https://proceedings.neurips.cc/paper/2015/file/215a71a12769b056c3c32e7299f1c5ed-Paper.pdf
Taylor, J., et al.: Efficient and precise interactive hand tracking through joint, continuous optimization of pose and correspondences. ACM Trans. Graph. 35(4), 1–2 (2016). https://doi.org/10.1145/2897824.2925965, https://doi.org/10.1145/2897824.2925965
Thies, J., Zollhofer, M., Stamminger, M., Theobalt, C., Nießner, M.: Face2Face: real-time face capture and reenactment of RGB videos. In: Computer Vision and Pattern Recognition (CVPR), pp. 2387–2395, June 2016
Tomè, D.,et al.: SelfPose: 3D egocentric pose estimation from a headset mounted camera. Trans. Pattern Anal. Mach. Intell. (TPAMI), 1 (2020). https://doi.org/10.1109/TPAMI.2020.3029700
Tome, D., Peluse, P., Agapito, L., Badino, H.: xR-EgoPose: egocentric 3D human pose from an HMD camera. In: International Conference on Computer Vision (ICCV), pp. 7728–7738, October 2019
Vogel, C., Pock, T.: A primal dual network for low-level vision problems. In: Roth, V., Vetter, T. (eds.) GCPR 2017. LNCS, vol. 10496, pp. 189–202. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66709-6_16
Wood, E., et al.: Fake it till you make it: face analysis in the wild using synthetic data alone. In: International Conference on Computer Vision (ICCV), pp. 3681–3691, October 2021
Xiang, D., Joo, H., Sheikh, Y.: Monocular total capture: posing face, body, and hands in the wild. In: Computer Vision and Pattern Recognition (CVPR), pp. 10965–10974, June 2019
Xie, K., Wang, T., Iqbal, U., Guo, Y., Fidler, S., Shkurti, F.: Physics-based human motion estimation and synthesis from videos. In: International Conference on Computer Vision (ICCV), pp. 11532–11541, October 2021
Xiong, X., De la Torre, F.: Supervised descent method and its applications to face alignment. In: Computer Vision and Pattern Recognition (CVPR), pp. 532–539, June 2013
Xu, H., Bazavan, E.G., Zanfir, A., Freeman, W.T., Sukthankar, R., Sminchisescu, C.: GHUM & GHUML: Generative 3D human shape and articulated pose models. In: Computer Vision and Pattern Recognition (CVPR), pp. 6183–6192, June 2020
Yang, D., Kim, D., Lee, S.H.: LoBSTr: real-time lower-body pose prediction from sparse upper-body tracking signals. Comput. Graph. Forum (2021). https://doi.org/10.1111/cgf.142631
Yuan, Y., Kitani, K.: Ego-pose estimation and forecasting as real-time PD control. In: International Conference on Computer Vision (ICCV), pp. 10082–10092, October 2019
Yuan, Y., Kitani, K.: 3D ego-pose estimation via imitation learning. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11220, pp. 763–778. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01270-0_45
Yuan, Y., Wei, S.E., Simon, T., Kitani, K., Saragih, J.: SimPoE: simulated character control for 3d human pose estimation. In: Computer Vision and Pattern Recognition (CVPR), pp. 7159–7169, June 2021
Zach, C.: Robust bundle adjustment revisited. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 772–787. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_50
Zanfir, A., Bazavan, E.G., Zanfir, M., Freeman, W.T., Sukthankar, R., Sminchisescu, C.: Neural Descent for Visual 3D Human Pose and Shape. In: Computer Vision and Pattern Recognition (CVPR), pp. 14484–14493, June 2021
Zhang, H., et al: PyMAF: 3D human pose and shape regression with pyramidal mesh alignment feedback loop. In: International Conference on Computer Vision (ICCV), pp. 11446–11456, October 2021
Zhang, S., Zhang, Y., Bogo, F., Marc, P., Tang, S.: Learning motion priors for 4d human body capture in 3d scenes. In: International Conference on Computer Vision (ICCV), pp. 11343–11353, October 2021
Zhou, Y., Barnes, C., Lu, J., Yang, J., Li, H.: On the continuity of rotation representations in neural networks. In: Computer Vision and Pattern Recognition (CVPR). pp. 5738–5746, June 2019
Zollhöfer, M., et al.: State of the art on monocular 3D face reconstruction, tracking, and applications. In: Computer Graphics Forum, vol. 37, pp. 523–550. Wiley Online Library (2018)
Acknowledgement
We thank Pashmina Cameron, Sadegh Aliakbarian, Tom Cashman, Darren Cosker and Andrew Fitzgibbon for valuable discussions and proof reading.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Choutas, V., Bogo, F., Shen, J., Valentin, J. (2022). Learning to Fit Morphable Models. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13666. Springer, Cham. https://doi.org/10.1007/978-3-031-20068-7_10
Download citation
DOI: https://doi.org/10.1007/978-3-031-20068-7_10
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-20067-0
Online ISBN: 978-3-031-20068-7
eBook Packages: Computer ScienceComputer Science (R0)