[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Explicit Occlusion Reasoning for Multi-person 3D Human Pose Estimation

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 (ECCV 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13665))

Included in the following conference series:

Abstract

Occlusion poses a great threat to monocular multi-person 3D human pose estimation due to large variability in terms of the shape, appearance, and position of occluders. While existing methods try to handle occlusion with pose priors/constraints, data augmentation, or implicit reasoning, they still fail to generalize to unseen poses or occlusion cases and may make large mistakes when multiple people are present. Inspired by the remarkable ability of humans to infer occluded joints from visible cues, we develop a method to explicitly model this process that significantly improves bottom-up multi-person human pose estimation with or without occlusions. First, we split the task into two subtasks: visible keypoints detection and occluded keypoints reasoning, and propose a Deeply Supervised Encoder Distillation (DSED) network to solve the second one. To train our model, we propose a Skeleton-guided human Shape Fitting (SSF) approach to generate pseudo occlusion labels on the existing datasets, enabling explicit occlusion reasoning. Experiments show that explicitly learning from occlusions improves human pose estimation. In addition, exploiting feature-level information of visible joints allows us to reason about occluded joints more accurately. Our method outperforms both the state-of-the-art top-down and bottom-up methods on several benchmarks. The code is available for research purposes https://github.com/qihao067/HUPOR.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 79.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 99.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    In this section, joints represent both keypoints and 3D PAFs.

References

  1. Akhter, I., Black, M.J.: Pose-conditioned joint angle limits for 3D human pose reconstruction. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1446–1455 (2015)

    Google Scholar 

  2. Artacho, B., Savakis, A.: Unipose: unified human pose estimation in single images and videos. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7035–7044 (2020)

    Google Scholar 

  3. de Bem, R., Arnab, A., Golodetz, S., Sapienza, M., Torr, P.: Deep fully-connected part-based models for human pose estimation. In: Asian Conference on Machine Learning, pp. 327–342. PMLR (2018)

    Google Scholar 

  4. Biggs, B., Ehrhadt, S., Joo, H., Graham, B., Vedaldi, A., Novotny, D.: 3D multi-bodies: fitting sets of plausible 3D human models to ambiguous image data. Adv. Neural. Inf. Process. Syst. 33, 20496–20507 (2020)

    Google Scholar 

  5. Brasó, G., Kister, N., Leal-Taixé, L.: The center of attention: center-keypoint grouping via attention for multi-person pose estimation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 11853–11863 (2021)

    Google Scholar 

  6. Cai, Y., et al.: Learning delicate local representations for multi-person pose estimation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12348, pp. 455–472. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58580-8_27

    Chapter  Google Scholar 

  7. Cai, Y., et al.: Exploiting spatial-temporal relationships for 3D pose estimation via graph convolutional networks. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 2272–2281 (2019)

    Google Scholar 

  8. Cao, Z., Simon, T., Wei, S.E., Sheikh, Y.: Realtime multi-person 2D pose estimation using part affinity fields. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7291–7299 (2017)

    Google Scholar 

  9. Chen, C.H., Ramanan, D.: 3D human pose estimation= 2D pose estimation+ matching. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7035–7043 (2017)

    Google Scholar 

  10. Chen, Y., Wang, Z., Peng, Y., Zhang, Z., Yu, G., Sun, J.: Cascaded pyramid network for multi-person pose estimation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7103–7112 (2018)

    Google Scholar 

  11. Cheng, B., Xiao, B., Wang, J., Shi, H., Huang, T.S., Zhang, L.: Higherhrnet: scale-aware representation learning for bottom-up human pose estimation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5386–5395 (2020)

    Google Scholar 

  12. Cheng, Y., Yang, B., Wang, B., Tan, R.T.: 3D human pose estimation using spatio-temporal networks with explicit occlusion training. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 10631–10638 (2020)

    Google Scholar 

  13. Cheng, Y., Yang, B., Wang, B., Yan, W., Tan, R.T.: Occlusion-aware networks for 3D human pose estimation in video. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 723–732 (2019)

    Google Scholar 

  14. Choi, H., Moon, G., Lee, K.M.: Pose2Mesh: graph convolutional network for 3D human pose and mesh recovery from a 2D human pose. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12352, pp. 769–787. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58571-6_45

    Chapter  Google Scholar 

  15. Chu, X., Yang, W., Ouyang, W., Ma, C., Yuille, A.L., Wang, X.: Multi-context attention for human pose estimation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1831–1840 (2017)

    Google Scholar 

  16. Fang, H.S., Xie, S., Tai, Y.W., Lu, C.: RMPE: regional multi-person pose estimation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2334–2343 (2017)

    Google Scholar 

  17. Gu, R., Wang, G., Hwang, J.N.: Exploring severe occlusion: multi-person 3D pose estimation with gated convolution. In: 2020 25th International Conference on Pattern Recognition (ICPR), pp. 8243–8250. IEEE (2021)

    Google Scholar 

  18. He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask R-CNN. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2961–2969 (2017)

    Google Scholar 

  19. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  20. Huang, J., Zhu, Z., Guo, F., Huang, G.: The devil is in the details: delving into unbiased data processing for human pose estimation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5700–5709 (2020)

    Google Scholar 

  21. Huang, S., Gong, M., Tao, D.: A coarse-fine network for keypoint localization. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3028–3037 (2017)

    Google Scholar 

  22. Insafutdinov, E., Pishchulin, L., Andres, B., Andriluka, M., Schiele, B.: DeeperCut: a deeper, stronger, and faster multi-person pose estimation model. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9910, pp. 34–50. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46466-4_3

    Chapter  Google Scholar 

  23. Ionescu, C., Papava, D., Olaru, V., Sminchisescu, C.: Human3. 6m: large scale datasets and predictive methods for 3D human sensing in natural environments. IEEE Trans. Pattern Anal. Mach. Intell. 36(7), 1325–1339 (2013)

    Article  Google Scholar 

  24. Jahangiri, E., Yuille, A.L.: Generating multiple diverse hypotheses for human 3D pose consistent with 2D joint detections. In: Proceedings of the IEEE International Conference on Computer Vision Workshops, pp. 805–814 (2017)

    Google Scholar 

  25. Jin, S., et al.: Differentiable hierarchical graph grouping for multi-person pose estimation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12352, pp. 718–734. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58571-6_42

    Chapter  Google Scholar 

  26. Joo, H., et al.: Panoptic studio: a massively multiview system for social motion capture. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3334–3342 (2015)

    Google Scholar 

  27. Joo, H., Neverova, N., Vedaldi, A.: Exemplar fine-tuning for 3D human model fitting towards in-the-wild 3D human pose estimation. arXiv preprint arXiv:2004.03686 (2020)

  28. Kanazawa, A., Black, M.J., Jacobs, D.W., Malik, J.: End-to-end recovery of human shape and pose. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7122–7131 (2018)

    Google Scholar 

  29. Khirodkar, R., Chari, V., Agrawal, A., Tyagi, A.: Multi-hypothesis pose networks: rethinking top-down pose estimation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3122–3131 (2021)

    Google Scholar 

  30. Kocabas, M., Huang, C.H.P., Hilliges, O., Black, M.J.: Pare: part attention regressor for 3D human body estimation. In: Proceedings of the IEEE International Conference on Computer Vision (2021)

    Google Scholar 

  31. Kolotouros, N., Pavlakos, G., Black, M.J., Daniilidis, K.: Learning to reconstruct 3D human pose and shape via model-fitting in the loop. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 2252–2261 (2019)

    Google Scholar 

  32. Kreiss, S., Bertoni, L., Alahi, A.: Pifpaf: composite fields for human pose estimation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11977–11986 (2019)

    Google Scholar 

  33. Li, C., Lee, G.H.: Generating multiple hypotheses for 3D human pose estimation with mixture density network. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9887–9895 (2019)

    Google Scholar 

  34. Li, J., Su, W., Wang, Z.: Simple pose: rethinking and improving a bottom-up approach for multi-person pose estimation. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 11354–11361 (2020)

    Google Scholar 

  35. Li, J., Wang, C., Zhu, H., Mao, Y., Fang, H.S., Lu, C.: Crowdpose: efficient crowded scenes pose estimation and a new benchmark. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10863–10872 (2019)

    Google Scholar 

  36. Li, J., Xu, C., Chen, Z., Bian, S., Yang, L., Lu, C.: Hybrik: a hybrid analytical-neural inverse kinematics solution for 3D human pose and shape estimation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3383–3393 (2021)

    Google Scholar 

  37. Li, W., et al.: Rethinking on multi-stage networks for human pose estimation. arXiv preprint arXiv:1901.00148 (2019)

  38. Lin, J., Lee, G.H.: HDNet: human depth estimation for multi-person camera-space localization. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12363, pp. 633–648. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58523-5_37

    Chapter  Google Scholar 

  39. Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48

    Chapter  Google Scholar 

  40. Liu, J., et al.: A graph attention spatio-temporal convolutional network for 3D human pose estimation in video. In: 2021 IEEE International Conference on Robotics and Automation (ICRA), pp. 3374–3380. IEEE (2021)

    Google Scholar 

  41. Loper, M., Mahmood, N., Romero, J., Pons-Moll, G., Black, M.J.: SMPL: a skinned multi-person linear model. ACM Trans. Graph. (Proc. SIGGRAPH Asia) 34(6), 2481–24816 (2015)

    Google Scholar 

  42. Mahmood, N., Ghorbani, N., Troje, N.F., Pons-Moll, G., Black, M.J.: Amass: archive of motion capture as surface shapes. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 5442–5451 (2019)

    Google Scholar 

  43. von Marcard, T., Henschel, R., Black, M.J., Rosenhahn, B., Pons-Moll, G.: Recovering accurate 3D human pose in the wild using IMUS and a moving camera. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 601–617 (2018)

    Google Scholar 

  44. Martinez, J., Hossain, R., Romero, J., Little, J.J.: A simple yet effective baseline for 3D human pose estimation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2640–2649 (2017)

    Google Scholar 

  45. Mehta, D., et al.: Monocular 3D human pose estimation in the wild using improved CNN supervision. In: 2017 International Conference on 3D Vision (3DV), pp. 506–516. IEEE (2017)

    Google Scholar 

  46. Mehta, D., et al.: XNect: real-time multi-person 3D human pose estimation with a single RGB camera. ACM Trans. Graph. (TOG) (2020)

    Google Scholar 

  47. Mehta, D., et al.: Single-shot multi-person 3D pose estimation from monocular RGB. In: 2018 International Conference on 3D Vision (3DV), pp. 120–130. IEEE (2018)

    Google Scholar 

  48. Mehta, D., et al.: Vnect: real-time 3D human pose estimation with a single RGB camera. ACM Trans. Graph. (TOG) 36(4), 1–14 (2017)

    Article  Google Scholar 

  49. Moon, G., Chang, J.Y., Lee, K.M.: Camera distance-aware top-down approach for 3D multi-person pose estimation from a single RGB image. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10133–10142 (2019)

    Google Scholar 

  50. Moon, G., Chang, J.Y., Lee, K.M.: Posefix: model-agnostic general human pose refinement network. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7773–7781 (2019)

    Google Scholar 

  51. Moreno-Noguer, F.: 3D human pose estimation from a single image via distance matrix regression. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2823–2832 (2017)

    Google Scholar 

  52. Newell, A., Huang, Z., Deng, J.: Associative embedding: end-to-end learning for joint detection and grouping. arXiv preprint arXiv:1611.05424 (2016)

  53. Newell, A., Yang, K., Deng, J.: Stacked hourglass networks for human pose estimation. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9912, pp. 483–499. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46484-8_29

    Chapter  Google Scholar 

  54. Papandreou, G., Zhu, T., Chen, L.C., Gidaris, S., Tompson, J., Murphy, K.: Personlab: person pose estimation and instance segmentation with a bottom-up, part-based, geometric embedding model. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 269–286 (2018)

    Google Scholar 

  55. Papandreou, G., et al.: Towards accurate multi-person pose estimation in the wild. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4903–4911 (2017)

    Google Scholar 

  56. Parger, M., et al.: UNOC: Understanding occlusion for embodied presence in virtual reality. IEEE Trans. Vis. Comput. Graph. (2021)

    Google Scholar 

  57. Park, S., Park, J.: Localizing human keypoints beyond the bounding box. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 1602–1611 (2021)

    Google Scholar 

  58. Passalis, N., Tefas, A.: Learning deep representations with probabilistic knowledge transfer. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 268–284 (2018)

    Google Scholar 

  59. Pavlakos, G., Zhou, X., Derpanis, K.G., Daniilidis, K.: Coarse-to-fine volumetric prediction for single-image 3D human pose. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7025–7034 (2017)

    Google Scholar 

  60. Pavllo, D., Feichtenhofer, C., Grangier, D., Auli, M.: 3D human pose estimation in video with temporal convolutions and semi-supervised training. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7753–7762 (2019)

    Google Scholar 

  61. Peng, X., Tang, Z., Yang, F., Feris, R.S., Metaxas, D.: Jointly optimize data augmentation and network training: adversarial data augmentation in human pose estimation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2226–2234 (2018)

    Google Scholar 

  62. Pishchulin, L., et al.: Deepcut: joint subset partition and labeling for multi person pose estimation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4929–4937 (2016)

    Google Scholar 

  63. Qiu, L., et al.: Peeking into occluded joints: a novel framework for crowd pose estimation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12364, pp. 488–504. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58529-7_29

    Chapter  Google Scholar 

  64. Radwan, I., Dhall, A., Goecke, R.: Monocular image 3D human pose estimation under self-occlusion. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1888–1895 (2013)

    Google Scholar 

  65. Rogez, G., Weinzaepfel, P., Schmid, C.: LCR-net: localization-classification-regression for human pose. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3433–3441 (2017)

    Google Scholar 

  66. Rogez, G., Weinzaepfel, P., Schmid, C.: LCR-net++: multi-person 2D and 3D pose detection in natural images. IEEE Trans. Pattern Anal. Mach. Intell. 42(5), 1146–1161 (2019)

    Google Scholar 

  67. Su, K., Yu, D., Xu, Z., Geng, X., Wang, C.: Multi-person pose estimation with enhanced channel-wise and spatial information. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5674–5682 (2019)

    Google Scholar 

  68. Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5693–5703 (2019)

    Google Scholar 

  69. Sun, X., Shang, J., Liang, S., Wei, Y.: Compositional human pose regression. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2602–2611 (2017)

    Google Scholar 

  70. Sun, Y., Bao, Q., Liu, W., Fu, Y., Black, M.J., Mei, T.: Monocular, one-stage, regression of multiple 3D people. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 11179–11188 (2021)

    Google Scholar 

  71. Véges, M., Lőrincz, A.: Temporal smoothing for 3D human pose estimation and localization for occluded people. In: Yang, H., et al. (eds.) ICONIP 2020. LNCS, vol. 12532, pp. 557–568. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-63830-6_47

    Chapter  Google Scholar 

  72. Wang, C., Li, J., Liu, W., Qian, C., Lu, C.: HMOR: hierarchical multi-person ordinal relations for monocular multi-person 3D pose estimation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12348, pp. 242–259. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58580-8_15

    Chapter  Google Scholar 

  73. Wang, J., Long, X., Gao, Y., Ding, E., Wen, S.: Graph-PCNN: two stage human pose estimation with graph pose refinement. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12356, pp. 492–508. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58621-8_29

    Chapter  Google Scholar 

  74. Wang, J., Xu, E., Xue, K., Kidzinski, L.: 3D pose detection in videos: focusing on occlusion. arXiv preprint arXiv:2006.13517 (2020)

  75. Wehrbein, T., Rudolph, M., Rosenhahn, B., Wandt, B.: Probabilistic monocular 3D human pose estimation with normalizing flows. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 11199–11208 (2021)

    Google Scholar 

  76. Xiao, B., Wu, H., Wei, Y.: Simple baselines for human pose estimation and tracking. In: Proceedings of the European conference on computer vision (ECCV), pp. 466–481 (2018)

    Google Scholar 

  77. Xu, J., Yu, Z., Ni, B., Yang, J., Yang, X., Zhang, W.: Deep kinematics analysis for monocular 3D human pose estimation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 899–908 (2020)

    Google Scholar 

  78. Xu, Y., Wang, W., Liu, T., Liu, X., Xie, J., Zhu, S.C.: Monocular 3D pose estimation via pose grammar and data augmentation. IEEE Trans. Pattern Anal. Mach. Intell. (2021)

    Google Scholar 

  79. Yang, W., Ouyang, W., Wang, X., Ren, J., Li, H., Wang, X.: 3D human pose estimation in the wild by adversarial learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5255–5264 (2018)

    Google Scholar 

  80. Zanfir, A., Marinoiu, E., Sminchisescu, C.: Monocular 3D pose and shape estimation of multiple people in natural scenes-the importance of multiple scene constraints. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2148–2157 (2018)

    Google Scholar 

  81. Zanfir, A., Marinoiu, E., Zanfir, M., Popa, A.I., Sminchisescu, C.: Deep network for the integrated 3D sensing of multiple people in natural images. Adv. Neural. Inf. Process. Syst. 31, 8410–8419 (2018)

    Google Scholar 

  82. Zhang, F., Zhu, X., Dai, H., Ye, M., Zhu, C.: Distribution-aware coordinate representation for human pose estimation. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp. 7093–7102 (2020)

    Google Scholar 

  83. Zhang, T., Huang, B., Wang, Y.: Object-occluded human shape and pose estimation from a single color image. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7376–7385 (2020)

    Google Scholar 

  84. Zhen, J., et al.: SMAP: single-shot multi-person absolute 3D pose estimation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12360, pp. 550–566. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58555-6_33

    Chapter  Google Scholar 

  85. Zhou, L., Chen, Y., Gao, Y., Wang, J., Lu, H.: Occlusion-aware siamese network for human pose estimation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12365, pp. 396–412. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58565-5_24

    Chapter  Google Scholar 

  86. Zhou, X., Huang, Q., Sun, X., Xue, X., Wei, Y.: Towards 3D human pose estimation in the wild: a weakly-supervised approach. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 398–407 (2017)

    Google Scholar 

  87. Zhou, X., Wang, D., Krähenbühl, P.: Objects as points. arXiv preprint arXiv:1904.07850 (2019)

Download references

Acknowledgements

This work was supported by NIH R01 EY029700. We thank the anonymous reviewers for their efforts and valuable feedback to improve our work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Song Bai .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 8332 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liu, Q., Zhang, Y., Bai, S., Yuille, A. (2022). Explicit Occlusion Reasoning for Multi-person 3D Human Pose Estimation. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13665. Springer, Cham. https://doi.org/10.1007/978-3-031-20065-6_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20065-6_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20064-9

  • Online ISBN: 978-3-031-20065-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics