[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Domain Generalization by Mutual-Information Regularization with Pre-trained Models

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 (ECCV 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13683))

Included in the following conference series:

  • 3458 Accesses

Abstract

Domain generalization (DG) aims to learn a generalized model to an unseen target domain using only limited source domains. Previous attempts to DG fail to learn domain-invariant representations only from the source domains due to the significant domain shifts between training and test domains. Instead, we re-formulate the DG objective using mutual information with the oracle model, a model generalized to any possible domain. We derive a tractable variational lower bound via approximating the oracle model by a pre-trained model, called Mutual Information Regularization with Oracle (MIRO). Our extensive experiments show that MIRO significantly improves the out-of-distribution performance. Furthermore, our scaling experiments show that the larger the scale of the pre-trained model, the greater the performance improvement of MIRO. Code is available at https://github.com/kakaobrain/miro.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 79.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 99.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Note that the terminology ERM can be unfair because other methods also minimize “empirical risk” but with different loss designs. We use the terminology “ERM” to indicate the cross-entropy baseline as suggested by Gulrajani and Lopez-Paz [24].

References

  1. Ahn, S., Hu, S.X., Damianou, A., Lawrence, N.D., Dai, Z.: Variational information distillation for knowledge transfer. In: Computer Vision and Pattern Recognition (2019)

    Google Scholar 

  2. Arjovsky, M., Bottou, L., Gulrajani, I., Lopez-Paz, D.: Invariant risk minimization. arXiv preprint arXiv:1907.02893 (2019)

  3. Bahng, H., Chun, S., Yun, S., Choo, J., Oh, S.J.: Learning de-biased representations with biased representations. In: International Conference on Machine Learning (2020)

    Google Scholar 

  4. Bai, H., et al.: Decaug: Out-of-distribution generalization via decomposed feature representation and semantic augmentation. In: AAAI Conference on Artificial Intelligence (2021)

    Google Scholar 

  5. Balaji, Y., Sankaranarayanan, S., Chellappa, R.: Metareg: Towards domain generalization using meta-regularization. In: Neural Information Processing Systems (2018)

    Google Scholar 

  6. Bandi, P., et al.: From detection of individual metastases to classification of lymph node status at the patient level: the camelyon17 challenge. IEEE Trans. Med. Imaging 38(2), 550–560 (2018)

    Article  Google Scholar 

  7. Barber, D., Agakov, F.: The im algorithm: a variational approach to information maximization. In: Neural Information Processing Systems (2004)

    Google Scholar 

  8. Beery, S., Van Horn, G., Perona, P.: Recognition in Terra incognita. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11220, pp. 472–489. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01270-0_28

    Chapter  Google Scholar 

  9. Belghazi, M.I., et al.: Mutual information neural estimation. In: International Conference on Machine Learning (2018)

    Google Scholar 

  10. Blanchard, G., Deshmukh, A.A., Dogan, U., Lee, G., Scott, C.: Domain generalization by marginal transfer learning. J. Mach. Learn. Res. 22(2), 1–55 (2021)

    MathSciNet  MATH  Google Scholar 

  11. Bui, M.H., Tran, T., Tran, A., Phung, D.: Exploiting domain-specific features to enhance domain generalization. In: Neural Information Processing Systems (2021)

    Google Scholar 

  12. Carlucci, F.M., D’Innocente, A., Bucci, S., Caputo, B., Tommasi, T.: Domain generalization by solving jigsaw puzzles. In: Computer Vision and Pattern Recognition (2019)

    Google Scholar 

  13. Cha, J., et al.: Swad: Domain generalization by seeking flat minima. In: Neural Information Processing Systems (2021)

    Google Scholar 

  14. Chattopadhyay, P., Balaji, Y., Hoffman, J.: Learning to balance specificity and invariance for in and out of domain generalization. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12354, pp. 301–318. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58545-7_18

    Chapter  Google Scholar 

  15. Chen, J., Wang, J., Lin, W., Zhang, K., de Silva, C.W.: Preserving domain private representation via mutual information maximization. arXiv preprint arXiv:2201.03102 (2022)

  16. Chen, X., Xie, S., He, K.: An empirical study of training self-supervised vision transformers. In: International Conference on Computer Vision (2021)

    Google Scholar 

  17. Dai, D., Van Gool, L.: Dark model adaptation: Semantic image segmentation from daytime to nighttime. In: International Conference on Intelligent Transportation Systems (2018)

    Google Scholar 

  18. Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., et al.: An image is worth 16x16 words: Transformers for image recognition at scale. In: International Conference on Learning Representations (2021)

    Google Scholar 

  19. Dou, Q., Castro, D.C., Kamnitsas, K., Glocker, B.: Domain generalization via model-agnostic learning of semantic features. In: Neural Information Processing System (2019)

    Google Scholar 

  20. Erhan, D., Bengio, Y., Courville, A., Vincent, P.: Visualizing higher-layer features of a deep network. University of Montreal 1341(3), 1 (2009)

    Google Scholar 

  21. Fang, C., Xu, Y., Rockmore, D.N.: Unbiased metric learning: On the utilization of multiple datasets and web images for softening bias. In: International Conference on Computer Vision (2013)

    Google Scholar 

  22. Ganin, Y., et al.: Domain-adversarial training of neural networks. J. Mach. Learn. Res. 17(1), 2030–2096 (2016)

    MathSciNet  Google Scholar 

  23. Geirhos, R., Rubisch, P., Michaelis, C., Bethge, M., Wichmann, F.A., Brendel, W.: Imagenet-trained cnns are biased towards texture; increasing shape bias improves accuracy and robustness. In: International Conference on Learning Representations (2019)

    Google Scholar 

  24. Gulrajani, I., Lopez-Paz, D.: In search of lost domain generalization. In: International Conference on Learning Representations (2021)

    Google Scholar 

  25. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Computer Vision and Pattern Recognition (2016)

    Google Scholar 

  26. Huang, Z., Wang, H., Xing, E.P., Huang, D.: Self-challenging improves cross-domain generalization. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12347, pp. 124–140. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58536-5_8

    Chapter  Google Scholar 

  27. Kim, D., Yoo, Y., Park, S., Kim, J., Lee, J.: Selfreg: Self-supervised contrastive regularization for domain generalization. In: International Conference on Computer Vision (2021)

    Google Scholar 

  28. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (2015)

    Google Scholar 

  29. Koh, P.W., et al.: Wilds: A benchmark of in-the-wild distribution shifts. In: International Conference on Machine Learning (2021)

    Google Scholar 

  30. Krueger, D., et al.: Out-of-distribution generalization via risk extrapolation (rex). arXiv preprint arXiv:2003.00688 (2020)

  31. Kumar, A., Raghunathan, A., Jones, R., Ma, T., Liang, P.: Fine-tuning can distort pretrained features and underperform out-of-distribution. In: International Conference on Learning Representations (2022)

    Google Scholar 

  32. Li, D., Yang, Y., Song, Y.Z., Hospedales, T.: Learning to generalize: Meta-learning for domain generalization. In: AAAI Conference on Artificial Intelligence (2018)

    Google Scholar 

  33. Li, D., Yang, Y., Song, Y.Z., Hospedales, T.M.: Deeper, broader and artier domain generalization. In: International Conference on Computer Vision (2017)

    Google Scholar 

  34. Li, D., Zhang, J., Yang, Y., Liu, C., Song, Y.Z., Hospedales, T.M.: Episodic training for domain generalization. In: International Conference on Computer Vision (2019)

    Google Scholar 

  35. Li, H., Pan, S.J., Wang, S., Kot, A.C.: Domain generalization with adversarial feature learning. In: Computer Vision and Pattern Recognition (2018)

    Google Scholar 

  36. Li, X., Xiong, H., Wang, H., Rao, Y., Liu, L., Huan, J.: Delta: Deep learning transfer using feature map with attention for convolutional networks. In: International Conference on Learning Representations (2019)

    Google Scholar 

  37. Li, Y., Gong, M., Tian, X., Liu, T., Tao, D.: Domain generalization via conditional invariant representations. In: AAAI Conference on Artificial Intelligence (2018)

    Google Scholar 

  38. Li, Z., Hoiem, D.: Learning without forgetting. IEEE Trans. Pattern Anal. Mach. Intell. 40(12), 2935–2947 (2017)

    Article  Google Scholar 

  39. Matsuura, T., Harada, T.: Domain generalization using a mixture of multiple latent domains. In: AAAI Conference on Artificial Intelligence (2020)

    Google Scholar 

  40. Michaelis, C., et al.: Benchmarking robustness in object detection: Autonomous driving when winter is coming. arXiv preprint arXiv:1907.07484 (2019)

  41. Muandet, K., Balduzzi, D., Schölkopf, B.: Domain generalization via invariant feature representation. In: International Conference on Machine Learning (2013)

    Google Scholar 

  42. Nam, H., Lee, H., Park, J., Yoon, W., Yoo, D.: Reducing domain gap by reducing style bias. In: Computer Vision and Pattern Recognition (2021)

    Google Scholar 

  43. Nuriel, O., Benaim, S., Wolf, L.: Permuted adain: Reducing the bias towards global statistics in image classification. In: Computer Vision and Pattern Recognition (2021)

    Google Scholar 

  44. Peng, X., Bai, Q., Xia, X., Huang, Z., Saenko, K., Wang, B.: Moment matching for multi-source domain adaptation. In: International Conference on Computer Vision (2019)

    Google Scholar 

  45. Radford, A., et al.: Learning transferable visual models from natural language supervision. In: International Conference on Machine Learning (2021)

    Google Scholar 

  46. Radosavovic, I., Kosaraju, R.P., Girshick, R., He, K., Dollár, P.: Designing network design spaces. In: Computer Vision and Pattern Recognition (2020)

    Google Scholar 

  47. Robey, A., Pappas, G.J., Hassani, H.: Model-based domain generalization. In: Neural Information Processing Systems (2021)

    Google Scholar 

  48. Russakovsky, O., et al.: Imagenet large scale visual recognition challenge. Int. J. Comput. Vision 115(3), 211–252 (2015)

    Article  MathSciNet  Google Scholar 

  49. Sagawa*, S., Koh*, P.W., Hashimoto, T.B., Liang, P.: Distributionally robust neural networks. In: International Conference on Learning Representations (2020)

    Google Scholar 

  50. Scimeca, L., Oh, S.J., Chun, S., Poli, M., Yun, S.: Which shortcut cues will dnns choose? a study from the parameter-space perspective. In: International Conference on Learning Representations (2022)

    Google Scholar 

  51. Shi, Y., et al.: Gradient matching for domain generalization. In: International Conference on Learning Representations (2022)

    Google Scholar 

  52. Singh, M., et al.: Revisiting weakly supervised pre-training of visual perception models. In: Computer Vision and Pattern Recognition (2022)

    Google Scholar 

  53. Sun, B., Saenko, K.: Deep CORAL: Correlation alignment for deep domain adaptation. In: Hua, G., Jégou, H. (eds.) ECCV 2016. LNCS, vol. 9915, pp. 443–450. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-49409-8_35

    Chapter  Google Scholar 

  54. Tian, Y., Krishnan, D., Isola, P.: Contrastive representation distillation. In: International Conference on Learning Representations (2019)

    Google Scholar 

  55. Vapnik, V.: Statistical learning theory. Wiley, NY (1998)

    Google Scholar 

  56. Venkateswara, H., Eusebio, J., Chakraborty, S., Panchanathan, S.: Deep hashing network for unsupervised domain adaptation. In: Computer Vision and Pattern Recognition (2017)

    Google Scholar 

  57. de Vries, T., Misra, I., Wang, C., van der Maaten, L.: Does object recognition work for everyone? In: Computer Vision and Pattern Recognition Workshops (2019)

    Google Scholar 

  58. Wang, Y., Li, H., Kot, A.C.: Heterogeneous domain generalization via domain mixup. In: International Conference on Acoustics, Speech and Signal Processing (2020)

    Google Scholar 

  59. Wortsman, M., et al.: Robust fine-tuning of zero-shot models. In: Computer Vision and Pattern Recognition (2022)

    Google Scholar 

  60. Xiao, K.Y., Engstrom, L., Ilyas, A., Madry, A.: Noise or signal: The role of image backgrounds in object recognition. In: International Conference on Learning Representations (2020)

    Google Scholar 

  61. Xu, M., et al.: Adversarial domain adaptation with domain mixup. In: AAAI Conference on Artificial Intelligence (2020)

    Google Scholar 

  62. Xuhong, L., Grandvalet, Y., Davoine, F.: Explicit inductive bias for transfer learning with convolutional networks. In: International Conference on Machine Learning (2018)

    Google Scholar 

  63. Yan, S., Song, H., Li, N., Zou, L., Ren, L.: Improve unsupervised domain adaptation with mixup training. arXiv preprint arXiv:2001.00677 (2020)

  64. Yang, F.E., Cheng, Y.C., Shiau, Z.Y., Wang, Y.C.F.: Adversarial teacher-student representation learning for domain generalization. In: Neural Information Processing Systems (2021)

    Google Scholar 

  65. Yang, K., Qinami, K., Fei-Fei, L., Deng, J., Russakovsky, O.: Towards fairer datasets: Filtering and balancing the distribution of the people subtree in the imagenet hierarchy. In: Conference on Fairness, Accountability, and Transparency (2020)

    Google Scholar 

  66. Zbontar, J., Jing, L., Misra, I., LeCun, Y., Deny, S.: Barlow twins: Self-supervised learning via redundancy reduction. In: International Conference on Machine Learning (2021)

    Google Scholar 

  67. Zhang, M., Marklund, H., Gupta, A., Levine, S., Finn, C.: Adaptive risk minimization: Learning to adapt to domain shift. In: Neural Information Processing Systems (2021)

    Google Scholar 

  68. Zhao, S., Gong, M., Liu, T., Fu, H., Tao, D.: Domain generalization via entropy regularization. In: Neural Information Processing Systems (2020)

    Google Scholar 

  69. Zhou, K., Yang, Y., Hospedales, T., Xiang, T.: Learning to generate novel domains for domain generalization. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12361, pp. 561–578. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58517-4_33

    Chapter  Google Scholar 

  70. Zhou, K., Yang, Y., Qiao, Y., Xiang, T.: Domain generalization with mixstyle. In: International Conference on Learning Representations (2021)

    Google Scholar 

Download references

Acknowledgements

This work was supported by IITP grant funded by the Korea government (MSIT) (No. 2021-0-01341, AI Graduate School Program, CAU).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junbum Cha .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 799 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cha, J., Lee, K., Park, S., Chun, S. (2022). Domain Generalization by Mutual-Information Regularization with Pre-trained Models. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13683. Springer, Cham. https://doi.org/10.1007/978-3-031-20050-2_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20050-2_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20049-6

  • Online ISBN: 978-3-031-20050-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics