[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

DnA: Improving Few-Shot Transfer Learning with Low-Rank Decomposition and Alignment

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 (ECCV 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13680))

Included in the following conference series:

Abstract

Self-supervised (SS) learning has achieved remarkable success in learning strong representation for in-domain few-shot and semi-supervised tasks. However, when transferring such representations to downstream tasks with domain shifts, the performance degrades compared to its supervised counterpart, especially at the few-shot regime. In this paper, we proposed to boost the transferability of the self-supervised pre-trained models on cross-domain tasks via a novel self-supervised alignment step on the target domain using only unlabeled data before conducting the downstream supervised fine-tuning. A new reparameterization of the pre-trained weights is also presented to mitigate the potential catastrophic forgetting during the alignment step. It involves low-rank and sparse decomposition, that can elegantly balance between preserving the source domain knowledge without forgetting (via fixing the low-rank subspace), and the extra flexibility to absorb the new out-of-the-domain knowledge (via freeing the sparse residual). Our resultant framework, termed Decomposition-and-Alignment (DnA), significantly improves the few-shot transfer performance of the SS pre-trained model to downstream tasks with domain gaps. (The code is released at https://github.com/VITA-Group/DnA).

Z. Jiang—Work done during an intership at Microsoft Corporation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Aghajanyan, A., Zettlemoyer, L., Gupta, S.: Intrinsic dimensionality explains the effectiveness of language model fine-tuning. arXiv preprint arXiv:2012.13255 (2020)

  2. Bossard, L., Guillaumin, M., Van Gool, L.: Food-101 – mining discriminative components with random forests. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8694, pp. 446–461. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10599-4_29

    Chapter  Google Scholar 

  3. Candès, E.J., Li, X., Ma, Y., Wright, J.: Robust principal component analysis? J. ACM (JACM) 58(3), 1–37 (2011)

    Article  MathSciNet  Google Scholar 

  4. Chen, T., Cheng, Y., Gan, Z., Liu, J., Wang, Z.: Data-efficient GAN training beyond (just) augmentations: a lottery ticket perspective. arXiv preprint arXiv:2103.00397 (2021)

  5. Chen, T., Liu, S., Chang, S., Cheng, Y., Amini, L., Wang, Z.: Adversarial robustness: from self-supervised pre-training to fine-tuning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 699–708 (2020)

    Google Scholar 

  6. Chen, T., Kornblith, S., Norouzi, M., Hinton, G.: A simple framework for contrastive learning of visual representations. In: International Conference on Machine Learning, pp. 1597–1607. PMLR (2020)

    Google Scholar 

  7. Chen, T., Kornblith, S., Swersky, K., Norouzi, M., Hinton, G.: Big self-supervised models are strong semi-supervised learners. arXiv preprint arXiv:2006.10029 (2020)

  8. Chen, X., Fan, H., Girshick, R., He, K.: Improved baselines with momentum contrastive learning. arXiv preprint arXiv:2003.04297 (2020)

  9. Chen, X., Wang, S., Fu, B., Long, M., Wang, J.: Catastrophic forgetting meets negative transfer: batch spectral shrinkage for safe transfer learning. Adv. Neural Inf. Process. Syst. 32 (2019)

    Google Scholar 

  10. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: Bert: pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018)

  11. Ericsson, L., Gouk, H., Hospedales, T.M.: How well do self-supervised models transfer? In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5414–5423 (2021)

    Google Scholar 

  12. Frankle, J., Carbin, M.: The lottery ticket hypothesis: finding sparse, trainable neural networks. In: International Conference on Learning Representations (2019)

    Google Scholar 

  13. Gidaris, S., Singh, P., Komodakis, N.: Unsupervised representation learning by predicting image rotations. arXiv preprint arXiv:1803.07728 (2018)

  14. Grill, J.B., et al.: Bootstrap your own latent: a new approach to self-supervised learning. arXiv preprint arXiv:2006.07733 (2020)

  15. Guo, D., Rush, A.M., Kim, Y.: Parameter-efficient transfer learning with diff pruning. arXiv preprint arXiv:2012.07463 (2020)

  16. Han, S., Pool, J., Tran, J., Dally, W.J.: Learning both weights and connections for efficient neural networks. arXiv preprint arXiv:1506.02626 (2015)

  17. He, K., Fan, H., Wu, Y., Xie, S., Girshick, R.: Momentum contrast for unsupervised visual representation learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9729–9738 (2020)

    Google Scholar 

  18. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  19. Helber, P., Bischke, B., Dengel, A., Borth, D.: Eurosat: a novel dataset and deep learning benchmark for land use and land cover classification. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 12(7), 2217–2226 (2019)

    Article  Google Scholar 

  20. Hu, E.J., et al.: Lora: low-rank adaptation of large language models. arXiv preprint arXiv:2106.09685 (2021)

  21. Huang, W., et al.: Deep low-rank plus sparse network for dynamic MR imaging (2021)

    Google Scholar 

  22. Islam, A., Chen, C.F., Panda, R., Karlinsky, L., Radke, R., Feris, R.: A broad study on the transferability of visual representations with contrastive learning. arXiv preprint arXiv:2103.13517 (2021)

  23. Jaderberg, M., Vedaldi, A., Zisserman, A.: Speeding up convolutional neural networks with low rank expansions. arXiv preprint arXiv:1405.3866 (2014)

  24. Jiang, Z., Chen, T., Chen, T., Wang, Z.: Robust pre-training by adversarial contrastive learning. In: NeurIPS (2020)

    Google Scholar 

  25. Kirkpatrick, J., et al.: Overcoming catastrophic forgetting in neural networks. Proc. Nat. Acad. Sci. 114(13), 3521–3526 (2017)

    Article  MathSciNet  Google Scholar 

  26. Kolesnikov, A., et al.: Big transfer (BiT): general visual representation learning. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12350, pp. 491–507. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58558-7_29

    Chapter  Google Scholar 

  27. Krizhevsky, A., Hinton, G., et al.: Learning multiple layers of features from tiny images (2009)

    Google Scholar 

  28. Li, S., et al.: Improve unsupervised pretraining for few-label transfer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10201–10210 (2021)

    Google Scholar 

  29. Li, X., et al.: Delta: deep learning transfer using feature map with attention for convolutional networks. arXiv preprint arXiv:1901.09229 (2019)

  30. Van der Maaten, L., Hinton, G.: Visualizing data using t-SNE. J. Mach. Learn. Res. 9(11), 2579–2605 (2008)

    MATH  Google Scholar 

  31. Noroozi, M., Favaro, P.: Unsupervised learning of visual representations by solving jigsaw puzzles. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9910, pp. 69–84. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46466-4_5

    Chapter  Google Scholar 

  32. Phoo, C.P., Hariharan, B.: Self-training for few-shot transfer across extreme task differences. arXiv preprint arXiv:2010.07734 (2020)

  33. Povey, D., et al.: Semi-orthogonal low-rank matrix factorization for deep neural networks. In: Interspeech, pp. 3743–3747 (2018)

    Google Scholar 

  34. Sainath, T.N., Kingsbury, B., Sindhwani, V., Arisoy, E., Ramabhadran, B.: Low-rank matrix factorization for deep neural network training with high-dimensional output targets. In: 2013 IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 6655–6659. IEEE (2013)

    Google Scholar 

  35. Sohn, K., et al.: Fixmatch: simplifying semi-supervised learning with consistency and confidence. arXiv preprint arXiv:2001.07685 (2020)

  36. Su, J.-C., Maji, S., Hariharan, B.: When does self-supervision improve few-shot learning? In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12352, pp. 645–666. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58571-6_38

    Chapter  Google Scholar 

  37. Sun, M., Baytas, I.M., Zhan, L., Wang, Z., Zhou, J.: Subspace network: deep multi-task censored regression for modeling neurodegenerative diseases. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 2259–2268 (2018)

    Google Scholar 

  38. Tai, C., Xiao, T., Zhang, Y., Wang, X., et al.: Convolutional neural networks with low-rank regularization. arXiv preprint arXiv:1511.06067 (2015)

  39. Tian, Y., Wang, Y., Krishnan, D., Tenenbaum, J.B., Isola, P.: Rethinking few-shot image classification: a good embedding is all you need? In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12359, pp. 266–282. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58568-6_16

    Chapter  Google Scholar 

  40. Trinh, T.H., Luong, M.T., Le, Q.V.: Selfie: self-supervised pretraining for image embedding. arXiv preprint arXiv:1906.02940 (2019)

  41. Van Horn, G., et al.: The inaturalist species classification and detection dataset. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8769–8778 (2018)

    Google Scholar 

  42. Xie, E., et al.: Detco: unsupervised contrastive learning for object detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 8392–8401 (2021)

    Google Scholar 

  43. Xie, Q., Luong, M.T., Hovy, E., Le, Q.V.: Self-training with noisy student improves imagenet classification. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10687–10698 (2020)

    Google Scholar 

  44. Xuhong, L., Grandvalet, Y., Davoine, F.: Explicit inductive bias for transfer learning with convolutional networks. In: International Conference on Machine Learning, pp. 2825–2834. PMLR (2018)

    Google Scholar 

  45. Yang, Y., Xu, Z.: Rethinking the value of labels for improving class-imbalanced learning. arXiv preprint arXiv:2006.07529 (2020)

  46. You, Y., Gitman, I., Ginsburg, B.: Large batch training of convolutional networks. arXiv preprint arXiv:1708.03888 (2017)

  47. Yu, X., Liu, T., Wang, X., Tao, D.: On compressing deep models by low rank and sparse decomposition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7370–7379 (2017)

    Google Scholar 

  48. Zhai, X., Oliver, A., Kolesnikov, A., Beyer, L.: S4l: self-supervised semi-supervised learning. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 1476–1485 (2019)

    Google Scholar 

  49. Zhang, R., Isola, P., Efros, A.A.: Colorful image colorization. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9907, pp. 649–666. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46487-9_40

    Chapter  Google Scholar 

  50. Zhang, Y., Chuangsuwanich, E., Glass, J.: Extracting deep neural network bottleneck features using low-rank matrix factorization. In: 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 185–189. IEEE (2014)

    Google Scholar 

  51. Zhang, Z., Chen, X., Chen, T., Wang, Z.: Efficient lottery ticket finding: Less data is more. In: International Conference on Machine Learning, pp. 12380–12390. PMLR (2021)

    Google Scholar 

  52. Zhao, M., Lin, T., Mi, F., Jaggi, M., Schütze, H.: Masking as an efficient alternative to finetuning for pretrained language models. arXiv preprint arXiv:2004.12406 (2020)

  53. Zhao, Y., Li, J., Gong, Y.: Low-rank plus diagonal adaptation for deep neural networks. In: 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 5005–5009. IEEE (2016)

    Google Scholar 

  54. Zhou, T., Tao, D.: Greedy bilateral sketch, completion & smoothing. In: Artificial Intelligence and Statistics, pp. 650–658. PMLR (2013)

    Google Scholar 

  55. Zhou, Z., Li, X., Wright, J., Candes, E., Ma, Y.: Stable principal component pursuit. In: 2010 IEEE International Symposium on Information Theory, pp. 1518–1522. IEEE (2010)

    Google Scholar 

  56. Zhu, H., Wang, Z., Zhang, H., Liu, M., Zhao, S., Qin, B.: Less is more: domain adaptation with lottery ticket for reading comprehension. In: Findings of the Association for Computational Linguistics: EMNLP 2021, pp. 1102–1113 (2021)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhangyang Wang .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 103 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jiang, Z. et al. (2022). DnA: Improving Few-Shot Transfer Learning with Low-Rank Decomposition and Alignment. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13680. Springer, Cham. https://doi.org/10.1007/978-3-031-20044-1_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-20044-1_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-20043-4

  • Online ISBN: 978-3-031-20044-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics