Abstract
Self-supervised (SS) learning has achieved remarkable success in learning strong representation for in-domain few-shot and semi-supervised tasks. However, when transferring such representations to downstream tasks with domain shifts, the performance degrades compared to its supervised counterpart, especially at the few-shot regime. In this paper, we proposed to boost the transferability of the self-supervised pre-trained models on cross-domain tasks via a novel self-supervised alignment step on the target domain using only unlabeled data before conducting the downstream supervised fine-tuning. A new reparameterization of the pre-trained weights is also presented to mitigate the potential catastrophic forgetting during the alignment step. It involves low-rank and sparse decomposition, that can elegantly balance between preserving the source domain knowledge without forgetting (via fixing the low-rank subspace), and the extra flexibility to absorb the new out-of-the-domain knowledge (via freeing the sparse residual). Our resultant framework, termed Decomposition-and-Alignment (DnA), significantly improves the few-shot transfer performance of the SS pre-trained model to downstream tasks with domain gaps. (The code is released at https://github.com/VITA-Group/DnA).
Z. Jiang—Work done during an intership at Microsoft Corporation.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Aghajanyan, A., Zettlemoyer, L., Gupta, S.: Intrinsic dimensionality explains the effectiveness of language model fine-tuning. arXiv preprint arXiv:2012.13255 (2020)
Bossard, L., Guillaumin, M., Van Gool, L.: Food-101 – mining discriminative components with random forests. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8694, pp. 446–461. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10599-4_29
Candès, E.J., Li, X., Ma, Y., Wright, J.: Robust principal component analysis? J. ACM (JACM) 58(3), 1–37 (2011)
Chen, T., Cheng, Y., Gan, Z., Liu, J., Wang, Z.: Data-efficient GAN training beyond (just) augmentations: a lottery ticket perspective. arXiv preprint arXiv:2103.00397 (2021)
Chen, T., Liu, S., Chang, S., Cheng, Y., Amini, L., Wang, Z.: Adversarial robustness: from self-supervised pre-training to fine-tuning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 699–708 (2020)
Chen, T., Kornblith, S., Norouzi, M., Hinton, G.: A simple framework for contrastive learning of visual representations. In: International Conference on Machine Learning, pp. 1597–1607. PMLR (2020)
Chen, T., Kornblith, S., Swersky, K., Norouzi, M., Hinton, G.: Big self-supervised models are strong semi-supervised learners. arXiv preprint arXiv:2006.10029 (2020)
Chen, X., Fan, H., Girshick, R., He, K.: Improved baselines with momentum contrastive learning. arXiv preprint arXiv:2003.04297 (2020)
Chen, X., Wang, S., Fu, B., Long, M., Wang, J.: Catastrophic forgetting meets negative transfer: batch spectral shrinkage for safe transfer learning. Adv. Neural Inf. Process. Syst. 32 (2019)
Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: Bert: pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018)
Ericsson, L., Gouk, H., Hospedales, T.M.: How well do self-supervised models transfer? In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5414–5423 (2021)
Frankle, J., Carbin, M.: The lottery ticket hypothesis: finding sparse, trainable neural networks. In: International Conference on Learning Representations (2019)
Gidaris, S., Singh, P., Komodakis, N.: Unsupervised representation learning by predicting image rotations. arXiv preprint arXiv:1803.07728 (2018)
Grill, J.B., et al.: Bootstrap your own latent: a new approach to self-supervised learning. arXiv preprint arXiv:2006.07733 (2020)
Guo, D., Rush, A.M., Kim, Y.: Parameter-efficient transfer learning with diff pruning. arXiv preprint arXiv:2012.07463 (2020)
Han, S., Pool, J., Tran, J., Dally, W.J.: Learning both weights and connections for efficient neural networks. arXiv preprint arXiv:1506.02626 (2015)
He, K., Fan, H., Wu, Y., Xie, S., Girshick, R.: Momentum contrast for unsupervised visual representation learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9729–9738 (2020)
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)
Helber, P., Bischke, B., Dengel, A., Borth, D.: Eurosat: a novel dataset and deep learning benchmark for land use and land cover classification. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 12(7), 2217–2226 (2019)
Hu, E.J., et al.: Lora: low-rank adaptation of large language models. arXiv preprint arXiv:2106.09685 (2021)
Huang, W., et al.: Deep low-rank plus sparse network for dynamic MR imaging (2021)
Islam, A., Chen, C.F., Panda, R., Karlinsky, L., Radke, R., Feris, R.: A broad study on the transferability of visual representations with contrastive learning. arXiv preprint arXiv:2103.13517 (2021)
Jaderberg, M., Vedaldi, A., Zisserman, A.: Speeding up convolutional neural networks with low rank expansions. arXiv preprint arXiv:1405.3866 (2014)
Jiang, Z., Chen, T., Chen, T., Wang, Z.: Robust pre-training by adversarial contrastive learning. In: NeurIPS (2020)
Kirkpatrick, J., et al.: Overcoming catastrophic forgetting in neural networks. Proc. Nat. Acad. Sci. 114(13), 3521–3526 (2017)
Kolesnikov, A., et al.: Big transfer (BiT): general visual representation learning. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12350, pp. 491–507. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58558-7_29
Krizhevsky, A., Hinton, G., et al.: Learning multiple layers of features from tiny images (2009)
Li, S., et al.: Improve unsupervised pretraining for few-label transfer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10201–10210 (2021)
Li, X., et al.: Delta: deep learning transfer using feature map with attention for convolutional networks. arXiv preprint arXiv:1901.09229 (2019)
Van der Maaten, L., Hinton, G.: Visualizing data using t-SNE. J. Mach. Learn. Res. 9(11), 2579–2605 (2008)
Noroozi, M., Favaro, P.: Unsupervised learning of visual representations by solving jigsaw puzzles. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9910, pp. 69–84. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46466-4_5
Phoo, C.P., Hariharan, B.: Self-training for few-shot transfer across extreme task differences. arXiv preprint arXiv:2010.07734 (2020)
Povey, D., et al.: Semi-orthogonal low-rank matrix factorization for deep neural networks. In: Interspeech, pp. 3743–3747 (2018)
Sainath, T.N., Kingsbury, B., Sindhwani, V., Arisoy, E., Ramabhadran, B.: Low-rank matrix factorization for deep neural network training with high-dimensional output targets. In: 2013 IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 6655–6659. IEEE (2013)
Sohn, K., et al.: Fixmatch: simplifying semi-supervised learning with consistency and confidence. arXiv preprint arXiv:2001.07685 (2020)
Su, J.-C., Maji, S., Hariharan, B.: When does self-supervision improve few-shot learning? In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12352, pp. 645–666. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58571-6_38
Sun, M., Baytas, I.M., Zhan, L., Wang, Z., Zhou, J.: Subspace network: deep multi-task censored regression for modeling neurodegenerative diseases. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 2259–2268 (2018)
Tai, C., Xiao, T., Zhang, Y., Wang, X., et al.: Convolutional neural networks with low-rank regularization. arXiv preprint arXiv:1511.06067 (2015)
Tian, Y., Wang, Y., Krishnan, D., Tenenbaum, J.B., Isola, P.: Rethinking few-shot image classification: a good embedding is all you need? In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12359, pp. 266–282. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58568-6_16
Trinh, T.H., Luong, M.T., Le, Q.V.: Selfie: self-supervised pretraining for image embedding. arXiv preprint arXiv:1906.02940 (2019)
Van Horn, G., et al.: The inaturalist species classification and detection dataset. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8769–8778 (2018)
Xie, E., et al.: Detco: unsupervised contrastive learning for object detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 8392–8401 (2021)
Xie, Q., Luong, M.T., Hovy, E., Le, Q.V.: Self-training with noisy student improves imagenet classification. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10687–10698 (2020)
Xuhong, L., Grandvalet, Y., Davoine, F.: Explicit inductive bias for transfer learning with convolutional networks. In: International Conference on Machine Learning, pp. 2825–2834. PMLR (2018)
Yang, Y., Xu, Z.: Rethinking the value of labels for improving class-imbalanced learning. arXiv preprint arXiv:2006.07529 (2020)
You, Y., Gitman, I., Ginsburg, B.: Large batch training of convolutional networks. arXiv preprint arXiv:1708.03888 (2017)
Yu, X., Liu, T., Wang, X., Tao, D.: On compressing deep models by low rank and sparse decomposition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7370–7379 (2017)
Zhai, X., Oliver, A., Kolesnikov, A., Beyer, L.: S4l: self-supervised semi-supervised learning. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 1476–1485 (2019)
Zhang, R., Isola, P., Efros, A.A.: Colorful image colorization. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9907, pp. 649–666. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46487-9_40
Zhang, Y., Chuangsuwanich, E., Glass, J.: Extracting deep neural network bottleneck features using low-rank matrix factorization. In: 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 185–189. IEEE (2014)
Zhang, Z., Chen, X., Chen, T., Wang, Z.: Efficient lottery ticket finding: Less data is more. In: International Conference on Machine Learning, pp. 12380–12390. PMLR (2021)
Zhao, M., Lin, T., Mi, F., Jaggi, M., Schütze, H.: Masking as an efficient alternative to finetuning for pretrained language models. arXiv preprint arXiv:2004.12406 (2020)
Zhao, Y., Li, J., Gong, Y.: Low-rank plus diagonal adaptation for deep neural networks. In: 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 5005–5009. IEEE (2016)
Zhou, T., Tao, D.: Greedy bilateral sketch, completion & smoothing. In: Artificial Intelligence and Statistics, pp. 650–658. PMLR (2013)
Zhou, Z., Li, X., Wright, J., Candes, E., Ma, Y.: Stable principal component pursuit. In: 2010 IEEE International Symposium on Information Theory, pp. 1518–1522. IEEE (2010)
Zhu, H., Wang, Z., Zhang, H., Liu, M., Zhao, S., Qin, B.: Less is more: domain adaptation with lottery ticket for reading comprehension. In: Findings of the Association for Computational Linguistics: EMNLP 2021, pp. 1102–1113 (2021)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Jiang, Z. et al. (2022). DnA: Improving Few-Shot Transfer Learning with Low-Rank Decomposition and Alignment. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13680. Springer, Cham. https://doi.org/10.1007/978-3-031-20044-1_14
Download citation
DOI: https://doi.org/10.1007/978-3-031-20044-1_14
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-20043-4
Online ISBN: 978-3-031-20044-1
eBook Packages: Computer ScienceComputer Science (R0)