Abstract
Thanks to the efforts and cooperation of the international community, nowadays it is possible to analyze astronomical data captured by the observatories and telescopes of major space agencies around the world from a personal computer. The development of virtual observatory technology (VO), and the standardization of the formats it uses, allow professional and amateur astronomers to access astronomical data and images through internet with relative ease. Immersed in this environment of global accessibility, this article presents an astronomical data-driven unsupervised music composition system based on Deep Learning, aimed at offering an automatic and objective review on the classical topic of the Harmonies of the Spheres. The system explores the MILES stellar library from the Spanish Virtual Observatory (SVO) using a variational autoencoder architecture to cross-match its stellar spectra via Pitch-Class Set Theory with a music score generated by a LSTM with attention neural network in the style of late-renaissance music.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Ballora, M.: Sonification, science and popular music: in search of the ‘wow’. Organ. Sound 19(1), 30–40 (2014). Cambridge University Press (2014)
Stephenson, B.: The music of the heavens: Kepler’s harmonic astronomy. Princeton University Press (2014). https://doi.org/10.1515/9781400863822
Pabón, G. C.: Numerus-proportio en el De Música de San Agustín:(Libros I y VI): la tradición pitagórico-platónica. Universidad de Salamanca (2009)
Martín, R.G: La teoría de la armonía de las esferas en el libro quinto de Harmonices Mundi de Johannes Kepler, p. 71 (2009)
Smirnov, V. A.: Music theory and the harmony method in J. Kepler’s work the harmony of the universe. Astron. Astrophys. Trans. 18(3), 521–532 (1999)
Herman, T.: Taxonomy and definitions for sonification and auditory display. In: Proceedings of the 14th International Conference on Auditory Display, pp. 2, Paris, France (2008)
McLean, A., Dean, T. (ed.).: The OxfordHandbook of Algorithmic Music, Oxford University Press, pp. 377, New York, USA (2018)
Gray, R.O., Corbally, C.: Stellar spectral classification. Princeton University Press (2009)
Stelib stellar library. http://svocats.cab.inta-csic.es/stelib/. Accessed 16 Mar 2023
FITS standard. https://fits.gsfc.nasa.gov. Accessed 1 Feb 2023
Van Cleve, J. E., et al.: Kepler Data Characteristics Handbook (KSCI-19040005) (2016)
Thompson, S., Fraquelli, D., Van Cleve, J., Caldwell, D.: Kepler Science Document (KDMC-10008-006) (2016)
Mullally, S.: MAST Kepler archive manual (2020)
Goodfellow, I., Bengio, J., Courville, A.: Deep Learning. The MIT Press, Cambridge (2016)
Briot, J.P., Hadjeres, G., Pachet, F.D.: Deep learning techniques for music generation, pp.85. Springer, Switzerland (2020). https://doi.org/10.1007/978-3-319-70163-9
MILES stellar library. http://miles.iac.es/. Accessed 16 Mar 2023
Shirlaw, M.: The music and tone-systems of ancient Greece. JSTOR Music Lett. XXXII(2), 131–139 (1951)
Jupiter notebook. https://jupyter.org/. Accessed 1 Feb 2023
Astropy Collaboration: The astropy project: sustaining and growing a community-oriented open-source project and the latest major release (v5.0) of the core package. Astrophys. J. 935(2), 167 (2022). https://doi.org/10.3847/1538-4357/ac7c74
Numpy library. https://numpy.org/. Accessed 1 Feb 2023
Matplotlib library. https://matplotlib.org/. Accessed 1 Feb 2023
Tensorflow library. https://www.tensorflow.org/guide. Accessed 1 Feb 2023
Cuthbert, M.S., Ariza, C.: Music21: a toolkit for computer-aided musicology and symbolic music data. ISMIR (2010)
Software Musescore. https://musescore.org/es. Accessed 1 Feb 2023
Prugniel, P., Soubiran, C.: New release of the ELODIE library (2004)
Sánchez-Blázquez, P., et al.: Medium-resolution Isaac Newton Telescope library of empirical spectra. Mon. Not. R. Astron. Soc. 371, 703–718 (2006) https://doi.org/10.1111/j.1365-2966.2006.10699.x
Falcón-Barroso, J., et al.: An updated MILES stellar library and stellar population models (Research Note). Astron. Astrophys. 532, A95 (2011). https://doi.org/10.1051/0004-6361/201116842
Valdes, F., Gupta, R., Rose, J.A., Singh, H.P., Bell, D.J.: The Indo-US library of Coudé feed stellar spectra. Astrophys. J. Suppl. Ser. 152, 251–259 (2004)
Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning representations by back-propagating errors. Nature 323(6088), 533–536 (1986)
Graves, A., Mohamed, A. R., and Hinton, G.: Speech recognition with deep recurrent neural networks. In 2013 IEEE international conference on acoustics, speech and signal processing, pp. 6645–6649. IEEE (2013)
Torres, J.: Python deep learning: Introducción práctica con Keras y TensorFlow 2. Marcombo (2020)
Bahdanau, D., Cho, K., and Bengio, Y.: Neural machine translation by jointly learning to align and translate, arXiv preprint arXiv:1409.0473 (2014)
Ball, P.: The music instinct. How music works and why we can’t do without it. Vintage Books (2009)
Pesic, P.: Earthly music and cosmic harmony: Johannes Kepler’s interest in practical music, especially Orlando di Lasso. J. Seventeenth-Century Music 11(1) (2005)
Babcock, J., Bali, R.: Generative AI with Python and TensorFlow 2: Create images, text, and music with VAEs, GANs, LSTMs, GPT models and more. Packt Publishing Ltd (2021)
Hawthorne, C., et al.: Enabling factorized piano music modeling and generation with the MAESTRO dataset. In: International Conference on Learning Representations (2019)
Forte, A.: The structure of atonal music (vol. 304). Yale University Press (1973)
Worrall, D.: Sonification Design: From Data to Intelligible Soundfields. HIS, Springer, Cham (2019). https://doi.org/10.1007/978-3-030-01497-1
Acknowledgments
This research includes data from the STELIB and MILES library service developed by the Spanish Virtual Observatory in the framework of the IAU Commission G5 Working Group : Spectral Stellar Libraries.
All MIDI files used in the experiments have been downloaded from music21 and Musescore open libraries.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Riber, A.G., Serradilla, F. (2023). AI-rmonies of the Spheres. In: Johnson, C., Rodríguez-Fernández, N., Rebelo, S.M. (eds) Artificial Intelligence in Music, Sound, Art and Design. EvoMUSART 2023. Lecture Notes in Computer Science, vol 13988. Springer, Cham. https://doi.org/10.1007/978-3-031-29956-8_9
Download citation
DOI: https://doi.org/10.1007/978-3-031-29956-8_9
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-29955-1
Online ISBN: 978-3-031-29956-8
eBook Packages: Computer ScienceComputer Science (R0)