[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

AI-rmonies of the Spheres

  • Conference paper
  • First Online:
Artificial Intelligence in Music, Sound, Art and Design (EvoMUSART 2023)

Abstract

Thanks to the efforts and cooperation of the international community, nowadays it is possible to analyze astronomical data captured by the observatories and telescopes of major space agencies around the world from a personal computer. The development of virtual observatory technology (VO), and the standardization of the formats it uses, allow professional and amateur astronomers to access astronomical data and images through internet with relative ease. Immersed in this environment of global accessibility, this article presents an astronomical data-driven unsupervised music composition system based on Deep Learning, aimed at offering an automatic and objective review on the classical topic of the Harmonies of the Spheres. The system explores the MILES stellar library from the Spanish Virtual Observatory (SVO) using a variational autoencoder architecture to cross-match its stellar spectra via Pitch-Class Set Theory with a music score generated by a LSTM with attention neural network in the style of late-renaissance music.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 55.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 69.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ballora, M.: Sonification, science and popular music: in search of the ‘wow’. Organ. Sound 19(1), 30–40 (2014). Cambridge University Press (2014)

    Google Scholar 

  2. Stephenson, B.: The music of the heavens: Kepler’s harmonic astronomy. Princeton University Press (2014). https://doi.org/10.1515/9781400863822

    Article  MATH  Google Scholar 

  3. Pabón, G. C.: Numerus-proportio en el De Música de San Agustín:(Libros I y VI): la tradición pitagórico-platónica. Universidad de Salamanca (2009)

    Google Scholar 

  4. Martín, R.G: La teoría de la armonía de las esferas en el libro quinto de Harmonices Mundi de Johannes Kepler, p. 71 (2009)

    Google Scholar 

  5. Smirnov, V. A.: Music theory and the harmony method in J. Kepler’s work the harmony of the universe. Astron. Astrophys. Trans. 18(3), 521–532 (1999)

    Google Scholar 

  6. Herman, T.: Taxonomy and definitions for sonification and auditory display. In: Proceedings of the 14th International Conference on Auditory Display, pp. 2, Paris, France (2008)

    Google Scholar 

  7. McLean, A., Dean, T. (ed.).: The OxfordHandbook of Algorithmic Music, Oxford University Press, pp. 377, New York, USA (2018)

    Google Scholar 

  8. Gray, R.O., Corbally, C.: Stellar spectral classification. Princeton University Press (2009)

    Google Scholar 

  9. Stelib stellar library. http://svocats.cab.inta-csic.es/stelib/. Accessed 16 Mar 2023

  10. FITS standard. https://fits.gsfc.nasa.gov. Accessed 1 Feb 2023

  11. Van Cleve, J. E., et al.: Kepler Data Characteristics Handbook (KSCI-19040005) (2016)

    Google Scholar 

  12. Thompson, S., Fraquelli, D., Van Cleve, J., Caldwell, D.: Kepler Science Document (KDMC-10008-006) (2016)

    Google Scholar 

  13. Mullally, S.: MAST Kepler archive manual (2020)

    Google Scholar 

  14. Goodfellow, I., Bengio, J., Courville, A.: Deep Learning. The MIT Press, Cambridge (2016)

    MATH  Google Scholar 

  15. Briot, J.P., Hadjeres, G., Pachet, F.D.: Deep learning techniques for music generation, pp.85. Springer, Switzerland (2020). https://doi.org/10.1007/978-3-319-70163-9

  16. MILES stellar library. http://miles.iac.es/. Accessed 16 Mar 2023

  17. Shirlaw, M.: The music and tone-systems of ancient Greece. JSTOR Music Lett. XXXII(2), 131–139 (1951)

    Google Scholar 

  18. Jupiter notebook. https://jupyter.org/. Accessed 1 Feb 2023

  19. Astropy Collaboration: The astropy project: sustaining and growing a community-oriented open-source project and the latest major release (v5.0) of the core package. Astrophys. J. 935(2), 167 (2022). https://doi.org/10.3847/1538-4357/ac7c74

  20. Numpy library. https://numpy.org/. Accessed 1 Feb 2023

  21. Matplotlib library. https://matplotlib.org/. Accessed 1 Feb 2023

  22. Tensorflow library. https://www.tensorflow.org/guide. Accessed 1 Feb 2023

  23. Cuthbert, M.S., Ariza, C.: Music21: a toolkit for computer-aided musicology and symbolic music data. ISMIR (2010)

    Google Scholar 

  24. Software Musescore. https://musescore.org/es. Accessed 1 Feb 2023

  25. Prugniel, P., Soubiran, C.: New release of the ELODIE library (2004)

    Google Scholar 

  26. Sánchez-Blázquez, P., et al.: Medium-resolution Isaac Newton Telescope library of empirical spectra. Mon. Not. R. Astron. Soc. 371, 703–718 (2006) https://doi.org/10.1111/j.1365-2966.2006.10699.x

  27. Falcón-Barroso, J., et al.: An updated MILES stellar library and stellar population models (Research Note). Astron. Astrophys. 532, A95 (2011). https://doi.org/10.1051/0004-6361/201116842

  28. Valdes, F., Gupta, R., Rose, J.A., Singh, H.P., Bell, D.J.: The Indo-US library of Coudé feed stellar spectra. Astrophys. J. Suppl. Ser. 152, 251–259 (2004)

    Article  Google Scholar 

  29. Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning representations by back-propagating errors. Nature 323(6088), 533–536 (1986)

    Google Scholar 

  30. Graves, A., Mohamed, A. R., and Hinton, G.: Speech recognition with deep recurrent neural networks. In 2013 IEEE international conference on acoustics, speech and signal processing, pp. 6645–6649. IEEE (2013)

    Google Scholar 

  31. Torres, J.: Python deep learning: Introducción práctica con Keras y TensorFlow 2. Marcombo (2020)

    Google Scholar 

  32. Bahdanau, D., Cho, K., and Bengio, Y.: Neural machine translation by jointly learning to align and translate, arXiv preprint arXiv:1409.0473 (2014)

  33. Ball, P.: The music instinct. How music works and why we can’t do without it. Vintage Books (2009)

    Google Scholar 

  34. Pesic, P.: Earthly music and cosmic harmony: Johannes Kepler’s interest in practical music, especially Orlando di Lasso. J. Seventeenth-Century Music 11(1) (2005)

    Google Scholar 

  35. Babcock, J., Bali, R.: Generative AI with Python and TensorFlow 2: Create images, text, and music with VAEs, GANs, LSTMs, GPT models and more. Packt Publishing Ltd (2021)

    Google Scholar 

  36. Hawthorne, C., et al.: Enabling factorized piano music modeling and generation with the MAESTRO dataset. In: International Conference on Learning Representations (2019)

    Google Scholar 

  37. Forte, A.: The structure of atonal music (vol. 304). Yale University Press (1973)

    Google Scholar 

  38. Worrall, D.: Sonification Design: From Data to Intelligible Soundfields. HIS, Springer, Cham (2019). https://doi.org/10.1007/978-3-030-01497-1

Download references

Acknowledgments

This research includes data from the STELIB and MILES library service developed by the Spanish Virtual Observatory in the framework of the IAU Commission G5 Working Group : Spectral Stellar Libraries.

All MIDI files used in the experiments have been downloaded from music21 and Musescore open libraries.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adrián García Riber .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Riber, A.G., Serradilla, F. (2023). AI-rmonies of the Spheres. In: Johnson, C., Rodríguez-Fernández, N., Rebelo, S.M. (eds) Artificial Intelligence in Music, Sound, Art and Design. EvoMUSART 2023. Lecture Notes in Computer Science, vol 13988. Springer, Cham. https://doi.org/10.1007/978-3-031-29956-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-29956-8_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-29955-1

  • Online ISBN: 978-3-031-29956-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics