[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Pervasive Computing for Efficient Intra-UAV Connectivity: Based on Context-Awareness

  • Conference paper
  • First Online:
Ubiquitous Networking (UNet 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13853))

Included in the following conference series:

  • 228 Accesses

Abstract

Swarms of unmanned aerial vehicles are increasingly being utilized for a variety of operations. However, extremely variable environmental circumstances alter their intra-UAV minimum safe distance, resulting in collision, and those near swarm’s edge become increasingly vulnerable to connectivity loss. Context-awareness as a strategy for developing pervasive computing in UAVs is gaining popularity to tackle these difficulties. A context awareness-based pervasive computing system model is proposed in this research to improve the safety and connectivity of individual UAVs in a swarm with their neighboring UAVs. To acquire the contexts of different environments the following systems were utilized: For physical, light intensity from real-time picture taken using camera; for human, facial recognition algorithm; for UAV local ICT, the UAV’s built-in CPU utilization percentage; for network ICT, wireless network signal strength using received signal strength analysis. Following simulation, we evaluated the accuracy, reaction time, and significant limits that must be considered. Most situations were recognized with great accuracy, ranging from 84.85% to 100%. On a machine with 16 GB of RAM and a 64-bit operating system, the total system performance had an average reaction time of 2.15 s in a scenario where all contexts were used in a prioritized manner. The environments under consideration, as well as the kind of UAV and its internal hardware system processing capacity, were determined to be key limits on the system’s performance. Analyzing the proposed system’s application, a UAV swarm can complete tasks without colliding while retaining intra-UAV connectivity by transmitting information across a reliable communication network.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 43.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 54.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Context. https://www.merriam-webster.com/dictionary/context. Accessed 20 Mar 2022

  2. Face detection and tracking using CamShift. https://www.mathworks.com/help/vision/ug/face-detection-and-tracking-using-camshift.html. Accessed 26 Jan 2022

  3. Matlab-deep-learning. https://github.com/matlab-deeplearning/mtcnn-face-detection. Accessed 20 Oct 2022

  4. Show CPU cores utilization in Matlab. https://stackoverflow.com/questions/25950727/show-cpu-coresutilization-in-matlab. Accessed 22 Jan 2022

  5. Abdelfattah, A.S., Abdelkader, T., EI-Horbaty, E.S.M.: Reliable web service consumption through mobile cloud computing. In: Mobile Computing-Technology and Applications. IntechOpen (2018)

    Google Scholar 

  6. Al-Muhtadi, J., Saleem, K., Al-Rabiaah, S., Imran, M., Gawanmeh, A., Rodrigues, J.J.: A lightweight cyber security framework with context-awareness for pervasive computing environments. Sustain. Urban Areas 66, 102610 (2021)

    Google Scholar 

  7. Argrow, B., et al.: The NCAR/EOL community workshop on unmanned aircraft systems for atmospheric research. Ph.D. thesis, National Center for Atmospheric Research (2017)

    Google Scholar 

  8. Bekmezci, I., Sahingoz, O.K., Temel, Ş: Flying ad-hoc networks (FANETs): a survey. Ad Hoc Netw. 11(3), 1254–1270 (2013)

    Article  Google Scholar 

  9. Daud, M., Khan, Q., Saleem, Y.: A study of key technologies for IoT and associated security challenges. In: 2017 International Symposium on Wireless Systems and Networks (ISWSN), pp. 1–6 (2017). https://doi.org/10.1109/ISWSN.2017.8250042

  10. Han, Y., Liu, L., Duan, L., Zhang, R.: Towards reliable UAV swarm communication in d2d-enhanced cellular networks. IEEE Trans. Wirel. Commun. 20(3), 1567–1581 (2021). https://doi.org/10.1109/TWC.2020.3034457

    Article  Google Scholar 

  11. Henricksen, K., Indulska, J.: A software engineering framework for context-aware pervasive computing. In: Proceedings of the Second IEEE Annual Conference on Pervasive Computing and Communications, 2004, pp. 77–86 (2004). https://doi.org/10.1109/PERCOM.2004.1276847

  12. Hosseini, N., Jamal, H., Haque, J., Magesacher, T., Matolak, D.W.: UAV command and control, navigation and surveillance: a review of potential 5g and satellite systems. In: 2019 IEEE Aerospace Conference, pp. 1–10 (2019). https://doi.org/10.1109/AERO.2019.8741719

  13. Lin, H., Yan, Z., Fu, Y.: Adaptive security-related data collection with context awareness. J. Netw. Comput. Appl. 126, 88–103 (2019)

    Article  Google Scholar 

  14. Mahama, E., et al.: Testing and evaluating the impact of illumination levels on UAV-assisted bridge inspection. In: 2022 IEEE Aerospace Conference (AERO), pp. 1–8 (2022). https://doi.org/10.1109/AERO53065.2022.9843209

  15. Mahama, E., et al.: Testing and evaluation of radio frequency immunity of unmanned aerial vehicles for bridge inspection. In: 2021 IEEE Aerospace Conference (50100), pp. 1–8 (2021). https://doi.org/10.1109/AERO50100.2021.9438457

  16. Mostefaoui, G., Pasquier-Rocha, J., Brezillon, P.: Context-aware computing: a guide for the pervasive computing community. In: The IEEE/ACS International Conference on Pervasive Services, 2004. ICPS 2004. Proceedings, pp. 39–48 (2004). https://doi.org/10.1109/PERSER.2004.1356763

  17. Mozaffari, M., Saad, W., Bennis, M., Nam, Y.H., Debbah, M.: A tutorial on UAVs for wireless networks: applications, challenges, and open problems. IEEE Commun. Surv. Tutor. 21(3), 2334–2360 (2019). https://doi.org/10.1109/COMST.2019.2902862

    Article  Google Scholar 

  18. Plathottam, S.J., Ranganathan, P.: Next generation distributed and networked autonomous vehicles: review. In: 2018 10th International Conference on Communication Systems Networks (COMSNETS), pp. 577–582 (2018). https://doi.org/10.1109/COMSNETS.2018.8328277

  19. Sahingoz, O.K.: Networking models in flying ad-hoc networks (FANETs): concepts and challenges. J. Intell. Robot. Syst. 74(1), 513–527 (2014)

    Article  Google Scholar 

  20. Shang, F., Su, W., Wang, Q., Gao, H., Fu, Q.: A location estimation algorithm based on RSSI vector similarity degree. Int. J. Distrib. Sens. Netw. 10(8), 371350 (2014)

    Article  Google Scholar 

  21. Silva, C., Sobral, A., Vieira, R.T.: An automatic facial expression recognition system evaluated by different classifiers. In: X Workshop de Visão Computacional, at Uberlândia, Minas Gerais, Brazil, pp. 208–212 (2014)

    Google Scholar 

  22. Tegicho, B.E., Bogale, T.E., Eroglu, A., Edmonson, W.: Connectivity and safety analysis of large scale UAV swarms: based on flight scheduling. In: 2021 IEEE 26th International Workshop on Computer Aided Modeling and Design of Communication Links and Networks (CAMAD), pp. 1–6 (2021). https://doi.org/10.1109/CAMAD52502.2021.9617780

  23. Tegicho, B.E., Geleta, T.N., Bogale, T.E., Eroglu, A., Edmonson, W., Bitsuamlak, G.: Effect of wind on the connectivity and safety of large scale UAV swarms. In: 2021 IEEE International Black Sea Conference on Communications and Networking (BlackSeaCom), pp. 1–6 (2021). https://doi.org/10.1109/BlackSeaCom52164.2021.9527821

  24. Tegicho, B.E., Graves, C.: Automatic emoji insertion based on environment context signals for the demonstration of pervasive computing features. In: SoutheastCon 2021, pp. 1–6 (2021). https://doi.org/10.1109/SoutheastCon45413.2021.9401878

  25. Yılmaz, Ö., Erdur, R.C.: IConAwa-an intelligent context-aware system. Expert Syst. Appl. 39(3), 2907–2918 (2012)

    Article  Google Scholar 

  26. Zeng, T., Semiari, O., Mozaffari, M., Chen, M., Saad, W., Bennis, M.: Federated learning in the sky: joint power allocation and scheduling with uav swarms. In: ICC 2020–2020 IEEE International Conference on Communications (ICC), pp. 1–6 (2020). https://doi.org/10.1109/ICC40277.2020.9148776

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Biruk E. Tegicho .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tegicho, B.E., Bogale, T.E., Graves, C. (2023). Pervasive Computing for Efficient Intra-UAV Connectivity: Based on Context-Awareness. In: Sabir, E., Elbiaze, H., Falcone, F., Ajib, W., Sadik, M. (eds) Ubiquitous Networking. UNet 2022. Lecture Notes in Computer Science, vol 13853. Springer, Cham. https://doi.org/10.1007/978-3-031-29419-8_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-29419-8_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-29418-1

  • Online ISBN: 978-3-031-29419-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics