[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

A Framework to Support Decision-Making Based on AI and Simulation of Large-Scale Models

  • Conference paper
  • First Online:
Economics of Grids, Clouds, Systems, and Services (GECON 2022)

Abstract

Big data collection and analysis is used in industry and public organizations to support decision-making. However, simulation as a core technology to support optimization, or the exploration of large state spaces in artificial intelligence have serious difficulties for industrial adoption. Our approach to solve these difficulties is the adoption of a modelling methodology supported by a cohesive framework based on the Petri net formalism for efficient simulation of complex discrete event systems over large computational infrastructures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 39.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 49.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Arronategui, U., Bañares, J.Á., Colom, J.M.: A MDE approach for modelling and distributed simulation of health systems. In: Djemame, K., Altmann, J., Bañares, J.Á., Agmon Ben-Yehuda, O., Stankovski, V., Tuffin, B. (eds.) GECON 2020. LNCS, vol. 12441, pp. 89–103. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-63058-4_9

    Chapter  Google Scholar 

  2. Bañares, J.Á., Colom, J.M.: Model and simulation engines for distributed simulation of discrete event systems. In: Coppola, M., Carlini, E., D’Agostino, D., Altmann, J., Bañares, J.Á. (eds.) GECON 2018. LNCS, vol. 11113, pp. 77–91. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-13342-9_7

    Chapter  Google Scholar 

  3. Bartz-Beielstein, T., Filipič, B., Korošec, P., Talbi, E.-G. (eds.): High-Performance Simulation-Based Optimization. SCI, vol. 833. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-18764-4

    Book  MATH  Google Scholar 

  4. Bergero, F., Kofman, E.: A vectorial devs extension for large scale system modeling and parallel simulation. SIMULATION 90(5), 522–546 (2014)

    Article  Google Scholar 

  5. Capocchi, L., Santucci, J.F.: Discrete event modeling and simulation for reinforcement learning system design. Information 13(3), 121 (2022)

    Article  Google Scholar 

  6. Hussain, K., Salleh, M.N.M., Cheng, S., Shi, Y.: Metaheuristic research: a comprehensive survey. Artif. Intell. Rev. 52(4), 2191–2233 (2019)

    Article  Google Scholar 

  7. Körber, M., Lange, J., Rediske, S., Steinmann, S., Glück, R.: Comparing popular simulation environments in the scope of robotics and reinforcement learning (2021). https://arxiv.org/abs/2103.04616

  8. Luke, S.: Essentials of Metaheuristics, 2nd edn. (2013). http://cs.gmu.edu/sean/book/metaheuristics/

  9. Meraji, S., Tropper, C.: Optimizing techniques for parallel digital logic simulation. IEEE Trans. Parallel Distrib. Syst. 23(6), 1135–1146 (2012)

    Article  Google Scholar 

  10. Rabe, M., Deininger, M., Juan, A.A.: Speeding up computational times in simheuristics combining genetic algorithms with discrete-event simulation. Simul. Model. Pract. Theory 103, 102089 (2020)

    Article  Google Scholar 

  11. Taylor, S.J.: Distributed simulation: state-of-the-art and potential for operational research. Eur. J. Oper. Res. 273(1), 1–19 (2019)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

This work was co-financed by the Aragonese Government and the European Regional Development Fund “Construyendo Europa desde Aragón” (COSMOS research group); and by the Spanish program “Programa estatal del Generación de Conocimiento y Fortalecimiento Científico y Tecnológico del Sistema de I+D+i”, project PGC2018-099815-B-100.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Ángel Bañares .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Arronategui, U., Bañares, J.Á., Colom, J.M. (2023). A Framework to Support Decision-Making Based on AI and Simulation of Large-Scale Models. In: Bañares, J.Á., Altmann, J., Agmon Ben-Yehuda, O., Djemame, K., Stankovski, V., Tuffin, B. (eds) Economics of Grids, Clouds, Systems, and Services. GECON 2022. Lecture Notes in Computer Science, vol 13430. Springer, Cham. https://doi.org/10.1007/978-3-031-29315-3_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-29315-3_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-29314-6

  • Online ISBN: 978-3-031-29315-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics