Abstract
Big data collection and analysis is used in industry and public organizations to support decision-making. However, simulation as a core technology to support optimization, or the exploration of large state spaces in artificial intelligence have serious difficulties for industrial adoption. Our approach to solve these difficulties is the adoption of a modelling methodology supported by a cohesive framework based on the Petri net formalism for efficient simulation of complex discrete event systems over large computational infrastructures.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Arronategui, U., Bañares, J.Á., Colom, J.M.: A MDE approach for modelling and distributed simulation of health systems. In: Djemame, K., Altmann, J., Bañares, J.Á., Agmon Ben-Yehuda, O., Stankovski, V., Tuffin, B. (eds.) GECON 2020. LNCS, vol. 12441, pp. 89–103. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-63058-4_9
Bañares, J.Á., Colom, J.M.: Model and simulation engines for distributed simulation of discrete event systems. In: Coppola, M., Carlini, E., D’Agostino, D., Altmann, J., Bañares, J.Á. (eds.) GECON 2018. LNCS, vol. 11113, pp. 77–91. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-13342-9_7
Bartz-Beielstein, T., Filipič, B., Korošec, P., Talbi, E.-G. (eds.): High-Performance Simulation-Based Optimization. SCI, vol. 833. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-18764-4
Bergero, F., Kofman, E.: A vectorial devs extension for large scale system modeling and parallel simulation. SIMULATION 90(5), 522–546 (2014)
Capocchi, L., Santucci, J.F.: Discrete event modeling and simulation for reinforcement learning system design. Information 13(3), 121 (2022)
Hussain, K., Salleh, M.N.M., Cheng, S., Shi, Y.: Metaheuristic research: a comprehensive survey. Artif. Intell. Rev. 52(4), 2191–2233 (2019)
Körber, M., Lange, J., Rediske, S., Steinmann, S., Glück, R.: Comparing popular simulation environments in the scope of robotics and reinforcement learning (2021). https://arxiv.org/abs/2103.04616
Luke, S.: Essentials of Metaheuristics, 2nd edn. (2013). http://cs.gmu.edu/sean/book/metaheuristics/
Meraji, S., Tropper, C.: Optimizing techniques for parallel digital logic simulation. IEEE Trans. Parallel Distrib. Syst. 23(6), 1135–1146 (2012)
Rabe, M., Deininger, M., Juan, A.A.: Speeding up computational times in simheuristics combining genetic algorithms with discrete-event simulation. Simul. Model. Pract. Theory 103, 102089 (2020)
Taylor, S.J.: Distributed simulation: state-of-the-art and potential for operational research. Eur. J. Oper. Res. 273(1), 1–19 (2019)
Acknowledgments
This work was co-financed by the Aragonese Government and the European Regional Development Fund “Construyendo Europa desde Aragón” (COSMOS research group); and by the Spanish program “Programa estatal del Generación de Conocimiento y Fortalecimiento Científico y Tecnológico del Sistema de I+D+i”, project PGC2018-099815-B-100.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Arronategui, U., Bañares, J.Á., Colom, J.M. (2023). A Framework to Support Decision-Making Based on AI and Simulation of Large-Scale Models. In: Bañares, J.Á., Altmann, J., Agmon Ben-Yehuda, O., Djemame, K., Stankovski, V., Tuffin, B. (eds) Economics of Grids, Clouds, Systems, and Services. GECON 2022. Lecture Notes in Computer Science, vol 13430. Springer, Cham. https://doi.org/10.1007/978-3-031-29315-3_14
Download citation
DOI: https://doi.org/10.1007/978-3-031-29315-3_14
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-29314-6
Online ISBN: 978-3-031-29315-3
eBook Packages: Computer ScienceComputer Science (R0)