[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

JNLP Team: Deep Learning Approaches for Tackling Long and Ambiguous Legal Documents in COLIEE 2022

  • Conference paper
  • First Online:
New Frontiers in Artificial Intelligence (JSAI-isAI 2022)

Abstract

Competition on Legal Information Extraction/Entailment (COLIEE) is an annual competition associated with the International Workshop in Juris-Informatics. The challenge for this competition is required not only the skills in processing long documents but also the ability to resolve ambiguity in the legal domain. For lengthy documents, we proposed a document-level attention mechanism (Task 1) and passage mining (Task 3, 4). Regarding ambiguity in the legal domain, we propose 2 methods that use abstract meaning representation to remove noise in given query and candidate documents (Task 2), and the second approach is use-case identification (Task 3). By categorizing the given query, we have different approaches to solving questions. The results reflect the difficulty level and competitiveness in this competition.

Supported by JSPS Kakenhi Grant Number 20H04295, 20K20406, and 20K20625.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 43.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 54.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://github.com/boudinfl/pke.

  2. 2.

    https://pypi.org/project/datefinder/.

  3. 3.

    https://github.com/explosion/spaCy.

References

  1. Beltagy, I., Peters, M.E., Cohan, A.: Longformer: the long-document transformer (2020). arXiv:2004.05150

  2. Brown, T., et al.: Language models are few-shot learners. Adv. Neural Inf. Process. Syst. 33, 1877–1901 (2020)

    Google Scholar 

  3. Chalkidis, I., Fergadiotis, M., Malakasiotis, P., Aletras, N., Androutsopoulos, I.: LEGAL-BERT: the muppets straight out of law school (2020). arXiv preprint arXiv:2010.02559

  4. Chalkidis, I., Fergadiotis, M., Malakasiotis, P., Aletras, N., Androutsopoulos, I.: LEGAL-BERT: the muppets straight out of law school. In: Findings of the Association for Computational Linguistics: EMNLP 2020, pp. 2898–2904, Online, November 2020. Association for Computational Linguistics (2020)

    Google Scholar 

  5. Clark, K., Luong, M.T., Le, Q.V., Manning, C.D.: ELECTRA: pre-training text encoders as discriminators rather than generators. In: ICLR (2020)

    Google Scholar 

  6. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: Bert: pre-training of deep bidirectional transformers for language understanding (2018). arXiv preprint arXiv:1810.04805

  7. Fujita, M., Kiyota, N., Kano, Y.: Predicate’s argument resolver and entity abstraction for legal question answering: kis teams at COLIEE 2021 shared task. In: Proceedings of the Eighteenth International Conference on Artificial Intelligence and Law (2021)

    Google Scholar 

  8. Kim, M.Y., Rabelo, J., Goebel, R.: Bm25 and transformer- based legal information extraction and entailment. In: Proceedings of the Eighteenth International Conference on Artificial Intelligence and Law (2021)

    Google Scholar 

  9. Kusner, M., Sun, Y., Kolkin, N., Weinberger, K.: From word embeddings to document distances. In: International Conference on Machine Learning, pp. 957–966. PMLR (2015)

    Google Scholar 

  10. Liu, Y., et al.: Roberta: a robustly optimized BERT pretraining approach (2019). CoRR, abs/1907.11692

    Google Scholar 

  11. Nguyen, H.-T., et al.: JNLP team: deep learning approaches for legal processing tasks in COLIEE 2021 (2021). arXiv preprint arXiv:2106.13405

  12. Rabelo, J., Kim, M.-Y., Goebel, R., Yoshioka, M., Kano, Y., Satoh, K.: COLIEE 2020: methods for legal document retrieval and entailment. In: Okazaki, N., Yada, K., Satoh, K., Mineshima, K. (eds.) JSAI-isAI 2020. LNCS (LNAI), vol. 12758, pp. 196–210. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-79942-7_13

    Chapter  Google Scholar 

  13. Raffel, C., et al.: Exploring the limits of transfer learning with a unified text-to-text transformer (2019). arXiv preprint arXiv:1910.10683

  14. Robertson, S.E., et al.: Okapi at TREC-3. Nist Special Publication Sp, 109, p. 109 (1995)

    Google Scholar 

  15. Schilder, F., et al.: A pentapus grapples with legal reasoning. In: Proceedings of the Eighteenth International Conference on Artificial Intelligence and Law (2021)

    Google Scholar 

  16. Shao, Y., et al.: BERT-PLI: modeling paragraph-level interactions for legal case retrieval. In: IJCAI, pp. 3501–3507 (2020)

    Google Scholar 

  17. Strohman, T., Metzler, D., Turtle, H., Croft, W.B.: Indri: A language model-based search engine for complex queries. In: Proceedings of the International Conference on Intelligent Analysis, vol. 2, pp. 2–6. Citeseer (2005)

    Google Scholar 

  18. Vaswani, A., et al.: Attention is all you need. Adv. Neural Inf. Process. Syst. 30 (2017)

    Google Scholar 

  19. Wehnert, S., Sudhi, V., Dureja, S., Kutty, L., Shahania, S., De Luca, E.W.: Legal norm retrieval with variations of the Bert model combined with TF-IDF vectorization. In: Proceedings of the Eighteenth International Conference on Artificial Intelligence and Law, pp. 285–294 (2021)

    Google Scholar 

  20. Yoshioka, M., Aoki, Y., Suzuki, Y.: BERT-based ensemble methods with data augmentation for legal textual entailment in COLIEE statute law task. In: Proceedings of the Eighteenth International Conference on Artificial Intelligence and Law, pp. 278–284 (2021)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Quan Minh Bui .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bui, Q.M. et al. (2023). JNLP Team: Deep Learning Approaches for Tackling Long and Ambiguous Legal Documents in COLIEE 2022. In: Takama, Y., Yada, K., Satoh, K., Arai, S. (eds) New Frontiers in Artificial Intelligence. JSAI-isAI 2022. Lecture Notes in Computer Science(), vol 13859. Springer, Cham. https://doi.org/10.1007/978-3-031-29168-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-29168-5_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-29167-8

  • Online ISBN: 978-3-031-29168-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics