[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

SNS-Based Secret Sharing Scheme for Security of Smart City Communication Systems

  • Conference paper
  • First Online:
Smart Cities ( ICSC-CITIES 2022)

Abstract

A smart city has a complex hierarchical communication system with various components. It must meet the requirements of fast communication, reliability, and security without compromising data. In the paper, we discuss methods and techniques for increasing the speed and reliability of the mobile ad hoc networks with a sufficient level of security. We consider combining the secret sharing schemes and residual number systems (RNS) as an efficient security mechanism for a smart city dynamic heterogeneous network. We analyze the concept of data transmission based on RNS that divides data into smaller parts and transmits them in parallel, protecting them from attacks on routes by adaptive multipath secured transmission. Proposed networks have the self-correcting properties that improve the reliability and fault tolerance of the entire system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 51.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 64.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Deakin, M., Al Waer, H.: From intelligent to smart cities. Intell. Build. Int. 3(3), 140–152 (2011). https://doi.org/10.1080/17508975.2011.586671

    Article  Google Scholar 

  2. Weinstein, R.: RFID: a technical overview and its application to the enterprise. IT Prof. 7(3), 27–33 (2005). https://doi.org/10.1109/MITP.2005.69

    Article  Google Scholar 

  3. Weissman, J.B.: Gallop: the benefits of wide-area computing for parallel processing. J. Parallel Distrib. Comput. 54(2), 183–205 (1998). https://doi.org/10.1006/jpdc.1998.1487

    Article  MATH  Google Scholar 

  4. Lange, D.B.: Mobile objects and mobile agents: the future of distributed computing? Presented at the (1998). https://doi.org/10.1007/BFb0054084

  5. Datla, D., et al.: Wireless distributed computing: a survey of research challenges. IEEE Commun. Mag. 50(1), 144–152 (2012). https://doi.org/10.1109/MCOM.2012.6122545

    Article  Google Scholar 

  6. Attasena, V., Darmont, J., Harbi, N.: Secret sharing for cloud data security: a survey. VLDB J. 26(5), 657–681 (2017). https://doi.org/10.1007/s00778-017-0470-9

    Article  Google Scholar 

  7. Lobo, P., et al.: Quality of Service for MANET based smart cities. Int. J. Adv. Comput. Eng. Netw. 5, 2 (2017)

    Google Scholar 

  8. Cardone, G., et al.: Effective collaborative monitoring in smart cities: converging MANET and WSN for fast data collection. In: Proceedings of ITU Kaleidoscope 2011: The Fully Networked Human? - Innovations for Future Networks and Services (K-2011), pp. 1–8. IEEE, Cape Town (2011)

    Google Scholar 

  9. Pandey, J., et al.: Novel scheme to heal MANET in smart city network. In: 2016 3rd MEC International Conference on Big Data and Smart City (ICBDSC), pp. 1–6. IEEE (2016). https://doi.org/10.1109/ICBDSC.2016.7460339

  10. Shiryaev, E., et al.: Performance impact of error correction codes in rns with returning methods and base extension. In: 2021 International Conference Engineering and Telecommunication (En&T), pp. 1–5. IEEE (2021). https://doi.org/10.1109/EnT50460.2021.9681756

  11. Babenko, M., et al.: Algorithm for constructing modular projections for correcting multiple errors based on a redundant residue number system using maximum likelihood decoding. Program. Comput. Softw. 47(8), 839–848 (2021). https://doi.org/10.1134/S0361768821080089

    Article  MathSciNet  MATH  Google Scholar 

  12. Babenko, M., et al.: RRNS base extension error-correcting code for performance optimization of scalable reliable distributed cloud data storage. In: 2021 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW), pp. 548–553. IEEE (2021). https://doi.org/10.1109/IPDPSW52791.2021.00087

  13. Tay, T.F., Chang, C.-H.: A new algorithm for single residue digit error correction in redundant residue number system. In: 2014 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 1748–1751. IEEE (2014). https://doi.org/10.1109/ISCAS.2014.6865493

  14. Nachiappan, R., et al.: Cloud storage reliability for big data applications: a state of the art survey. J. Netw. Comput. Appl. 97, 35–47 (2017). https://doi.org/10.1016/j.jnca.2017.08.011

    Article  Google Scholar 

  15. Chang, F., et al.: Bigtable: a distributed storage system for structured data. ACM Trans. Comput. Syst. 26(2), 1–26 (2008). https://doi.org/10.1145/1365815.1365816

    Article  Google Scholar 

  16. Dimakis, A.G., et al.: Network coding for distributed storage systems. IEEE Trans. Inf. Theory. 56(9), 4539–4551 (2010). https://doi.org/10.1109/TIT.2010.2054295

    Article  MATH  Google Scholar 

  17. Lin, S.-J., et al.: Novel polynomial basis and its application to reed-solomon erasure codes. In: 2014 IEEE 55th Annual Symposium on Foundations of Computer Science, pp. 316–325. IEEE (2014). https://doi.org/10.1109/FOCS.2014.41

  18. Ye, R., Boukerche, A., Wang, H., Zhou, X., Yan, B.: RESIDENT: a reliable residue number system-based data transmission mechanism for wireless sensor networks. Wireless Netw. 24(2), 597–610 (2016). https://doi.org/10.1007/s11276-016-1357-1

    Article  Google Scholar 

  19. Stergiou, C., et al.: Secure integration of IoT and cloud computing. Futur. Gener. Comput. Syst. 78, 964–975 (2018). https://doi.org/10.1016/j.future.2016.11.031

    Article  Google Scholar 

  20. Lee, B.-H., et al.: Data security in cloud computing using AES under HEROKU cloud. In: 2018 27th Wireless and Optical Communication Conference (WOCC), pp. 1–5. IEEE (2018). https://doi.org/10.1109/WOCC.2018.8372705

  21. Zhou, S., et al.: ESDR: an efficient and secure data repairing paradigm in cloud storage. Secur. Commun. Networks. 9(16), 3646–3657 (2016). https://doi.org/10.1002/sec.1571

    Article  Google Scholar 

  22. Lin, H.-Y., Tzeng, W.-G.: A secure erasure code-based cloud storage system with secure data forwarding. IEEE Trans. Parallel Distrib. Syst. 23(6), 995–1003 (2012). https://doi.org/10.1109/TPDS.2011.252

    Article  Google Scholar 

  23. Tchernykh, A., et al.: AC-RRNS: Anti-collusion secured data sharing scheme for cloud storage. Int. J. Approx. Reason. 102, 60–73 (2018). https://doi.org/10.1016/j.ijar.2018.07.010

    Article  MathSciNet  MATH  Google Scholar 

  24. Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979). https://doi.org/10.1145/359168.359176

    Article  MathSciNet  MATH  Google Scholar 

  25. Chervyakov, N., et al.: AR-RRNS: configurable reliable distributed data storage systems for internet of things to ensure security. Futur. Gener. Comput. Syst. 92, 1080–1092 (2019). https://doi.org/10.1016/j.future.2017.09.061

    Article  Google Scholar 

  26. Celesti, A., et al.: Adding long-term availability, obfuscation, and encryption to multi-cloud storage systems. J. Netw. Comput. Appl. 59, 208–218 (2016). https://doi.org/10.1016/j.jnca.2014.09.021

    Article  Google Scholar 

  27. Shen, P., et al.: SpyStorage: a highly reliable multi-cloud storage with secure and anonymous data sharing. In: 2017 International Conference on Networking, Architecture, and Storage (NAS), pp. 1–6. IEEE (2017). https://doi.org/10.1109/NAS.2017.8026878

  28. Radha Devi, G., Kumar, A.: DROPS: division and replication of data in cloud for optimal performance and security. Adv. Math. Sci. J. 9(7), 5075–5083 (2020). https://doi.org/10.37418/amsj.9.7.73

  29. Gentry, C.: Computing arbitrary functions of encrypted data. Commun. ACM 53(3), 97–105 (2010). https://doi.org/10.1145/1666420.1666444

    Article  MATH  Google Scholar 

  30. Gomathisankaran, M., et al.: HORNS: a homomorphic encryption scheme for cloud computing using residue number system. In: 2011 45th Annual Conference on Information Sciences and Systems, pp. 1–5. IEEE (2011). https://doi.org/10.1109/CISS.2011.5766176

  31. Asmuth, C., Bloom, J.: A modular approach to key safeguarding. IEEE Trans. Inf. Theory. 29(2), 208–210 (1983). https://doi.org/10.1109/TIT.1983.1056651

    Article  MathSciNet  MATH  Google Scholar 

  32. Mignotte, M.: How to share a secret. In: Beth, T. (ed.) EUROCRYPT 1982. LNCS, vol. 149, pp. 371–375. Springer, Heidelberg (1983). https://doi.org/10.1007/3-540-39466-4_27

    Chapter  Google Scholar 

  33. Miranda-López, V., et al.: Experimental analysis of secret sharing schemes for cloud storage based on RNS. In: Mocskos, E., Nesmachnow, S. (eds.) CARLA 2017. CCIS, vol. 796, pp. 370–383. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-73353-1_26

    Chapter  Google Scholar 

  34. Abu-Libdeh, H., et al.: RACS. In: Proceedings of the 1st ACM symposium on Cloud computing - SoCC 2010, p. 229. ACM Press, New York (2010). https://doi.org/10.1145/1807128.1807165

  35. Bessani, A., et al.: DepSky. ACM Trans. Storage 9(4), 1–33 (2013). https://doi.org/10.1145/2535929

    Article  Google Scholar 

  36. Krawczyk, H.: Secret sharing made short. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 136–146. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-48329-2_12

    Chapter  Google Scholar 

  37. Barzu, M., et al.: Compact sequences of co-primes and their applications to the security of CRT-based threshold schemes. Inf. Sci. (Ny) 240, 161–172 (2013). https://doi.org/10.1016/j.ins.2013.03.062

    Article  MathSciNet  MATH  Google Scholar 

  38. Quisquater, M., et al.: On the security of the threshold scheme based on the Chinese remainder theorem. Presented at the (2002). https://doi.org/10.1007/3-540-45664-3_14

Download references

Acknowledgments

This work was supported by the Ministry of Education and Science of the Russian Federation (Project 075-15-2020-788).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Egor Shiriaev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gladkov, A. et al. (2023). SNS-Based Secret Sharing Scheme for Security of Smart City Communication Systems. In: Nesmachnow, S., Hernández Callejo, L. (eds) Smart Cities. ICSC-CITIES 2022. Communications in Computer and Information Science, vol 1706. Springer, Cham. https://doi.org/10.1007/978-3-031-28454-0_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-28454-0_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-28453-3

  • Online ISBN: 978-3-031-28454-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics