Abstract
Space-time video super-resolution, which aims to generate a high resolution (HR) and high frame rate (HRF) video from a low frame rate (LFR), low resolution (LR) video. Simply combining video frame interpolation (VFI) and video super-resolution (VSR) network to solve this problem cannot bring satisfying performance, which also requires a heavy computational burden. In this paper, we investigate a one-stage network to jointly up-sample video both in time and space. In our framework, a 3D pyramid structure with channel attention is proposed to fuse input frames and generate intermediate features. The features are fed into the 3D Transformer network to model global relationships between features. Our proposed network, 3DTFSR, can efficiently process videos without explicit motion compensation. Extensive experiments on benchmark datasets demonstrate that the proposed method achieves better quantitative and qualitative performance compared to a two-stage network.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bao, W., Lai, W.S., Ma, C., Zhang, X., Gao, Z., Yang, M.H.: Depth-aware video frame interpolation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3703–3712 (2019)
Jiang, H., Sun, D., Jampani, V., Yang, M.H., Learned-Miller, E., Kautz, J.: Super SloMo: high quality estimation of multiple intermediate frames for video interpolation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 9000–9008 (2018)
Niklaus, S., Liu, F.: Context-aware synthesis for video frame interpolation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1701–1710 (2018)
Sajjadi, M.S., Vemulapalli, R., Brown, M.: Frame-recurrent video super-resolution. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6626–6634 (2018)
Wang, X., Chan, K.C., Yu, K., Dong, C., Change Loy, C.: EDVR: video restoration with enhanced deformable convolutional networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (2019)
Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems, vol. 30 (2017)
Shi, Z., Xu, X., Liu, X., Chen, J., Yang, M.H.: Video frame interpolation transformer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 17482–17491 (2022)
Cao, J., Li, Y., Zhang, K., Van Gool, L.: Video super-resolution transformer. arXiv preprint arXiv:2106.06847 (2021)
Yang, F., Yang, H., Fu, J., Lu, H., Guo, B.: Learning texture transformer network for image super-resolution. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5791–5800 (2020)
Niklaus, S., Mai, L., Liu, F.: Video frame interpolation via adaptive separable convolution. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 261–270 (2017)
Kalluri, T., Pathak, D., Chandraker, M., Tran, D.: FLAVR: flow-agnostic video representations for fast frame interpolation. arXiv preprint arXiv:2012.08512 (2020)
Chan, K.C., Wang, X., Yu, K., Dong, C., Loy, C.C.: BasicVSR: the search for essential components in video super-resolution and beyond. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4947–4956 (2021)
Haris, M., Shakhnarovich, G., Ukita, N.: Recurrent back-projection network for video super-resolution. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3897–3906 (2019)
Xie, S., Sun, C., Huang, J., Tu, Z., Murphy, K.: Rethinking spatiotemporal feature learning: speed-accuracy trade-offs in video classification. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 305–321 (2018)
Lim, B., Lee, K.M.: Deep recurrent ResNet for video super-resolution. In: 2007 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC), pp. 1452–1455. IEEE (2017)
Meyer, S., Djelouah, A., McWilliams, B., Sorkine-Hornung, A., Gross, M., Schroers, C.: PhaseNet for video frame interpolation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 498–507 (2018)
Meyer, S., Wang, O., Zimmer, H., Grosse, M., Sorkine-Hornung, A.: Phase-based frame interpolation for video. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1410–1418 (2015)
Sun, D., Yang, X., Liu, M.Y., Kautz, J.: PWC-Net: CNNs for optical flow using pyramid, warping, and cost volume. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8934–8943 (2018)
Choi, M., Kim, H., Han, B., Xu, N., Lee, K.M.: Channel attention is all you need for video frame interpolation. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 10663–10671 (2020)
Dosovitskiy, A., et al.: An image is worth 16x16 words: transformers for image recognition at scale. arXiv preprint arXiv:2010.11929 (2020)
Yuan, L., et al.: Tokens-to-token ViT: training vision transformers from scratch on ImageNet. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 558–567 (2021)
Arnab, A., Dehghani, M., Heigold, G., Sun, C., Lučić, M., Schmid, C.: ViViT: a video vision transformer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 6836–6846 (2021)
Girdhar, R., Carreira, J., Doersch, C., Zisserman, A.: Video action transformer network. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 244–253 (2019)
Kumar, M., Weissenborn, D., Kalchbrenner, N.: Colorization transformer. arXiv preprint arXiv:2102.04432 (2021)
Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28
Luo, J., Huang, S., Yuan, Y.: Video super-resolution using multi-scale pyramid 3D convolutional networks. In: Proceedings of the 28th ACM International Conference on Multimedia, pp. 1882–1890 (2020)
Shi, W., et al.: Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1874–1883 (2016)
Ramachandran, P., Parmar, N., Vaswani, A., Bello, I., Levskaya, A., Shlens, J.: Stand-alone self-attention in vision models. In: Advances in Neural Information Processing Systems, vol. 32 (2019)
Xue, T., Chen, B., Wu, J., Wei, D., Freeman, W.T.: Video enhancement with task-oriented flow. Int. J. Comput. Vis. 127, 1106–1125 (2019)
Kappeler, A., Yoo, S., Dai, Q., Katsaggelos, A.K.: Video super-resolution with convolutional neural networks. IEEE Trans. Comput. Imaging 2, 109–122 (2016)
Huang, Z., Zhang, T., Heng, W., Shi, B., Zhou, S.: Rife: real-time intermediate flow estimation for video frame interpolation. arXiv preprint arXiv:2011.06294 (2020)
Sim, H., Oh, J., Kim, M.: XVFI: extreme video frame interpolation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 14489–14498 (2021)
Liu, Z., et al.: Swin transformer: hierarchical vision transformer using shifted windows. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10012–10022 (2021)
Haris, M., Shakhnarovich, G., Ukita, N.: Space-time-aware multi-resolution video enhancement. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10012–10022 (2020)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Zheng, M., Luo, J. (2023). Space-Time Video Super-Resolution 3D Transformer. In: Dang-Nguyen, DT., et al. MultiMedia Modeling. MMM 2023. Lecture Notes in Computer Science, vol 13834. Springer, Cham. https://doi.org/10.1007/978-3-031-27818-1_31
Download citation
DOI: https://doi.org/10.1007/978-3-031-27818-1_31
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-27817-4
Online ISBN: 978-3-031-27818-1
eBook Packages: Computer ScienceComputer Science (R0)