[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Scalability of Multi-objective Evolutionary Algorithms for Solving Real-World Complex Optimization Problems

  • Conference paper
  • First Online:
Evolutionary Multi-Criterion Optimization (EMO 2023)

Abstract

The use Multi-Objective Evolutionary Algorithms (MOEAs) to solve real-world multi-objective optimization problems often finds a problem designated by the curse of dimensionality. This is mainly because the progression of the algorithm along successive generations is based on non-dominance relations that practically do not exist when the number of objectives is high. Also, the existence of many objectives makes the choice of a solution to the problem under study very difficult. Several methods have been proposed in the literature to reduce the number of objectives to use during the optimization process. In the present work, a methodology to reduce the number of objectives is proposed. This method is based on DAMICORE (DAta MIning of COde REpositories), a machine-learning algorithm proposed by the authors. A theoretical comparison with a similar machine learning approach is made, pointing out some advantages of using the proposed algorithm using a benchmark problem designated by DTLZ5. Also, a real problem is used to show the effectiveness of the methodology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 59.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 74.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Brockhoff, D., Zitzler, E.: Are all objectives necessary? on dimensionality reduction in evolutionary multiobjective optimization. In: Runarsson, T.P., Beyer, H.-G., Burke, E., Merelo-Guervós, J.J., Whitley, L.D., Yao, X. (eds.) PPSN 2006. LNCS, vol. 4193, pp. 533–542. Springer, Heidelberg (2006). https://doi.org/10.1007/11844297_54

    Chapter  Google Scholar 

  2. Brockhoff, D., Zitzler, E.: Objective reduction in evolutionary multiobjective optimization: theory and applications. In: Evolutionary Computation 17(2), 135–166 (2009). https://doi.org/10.1162/evco.2009.17.2.135

  3. Deb, K., Saxena, D.K.: Searching for pareto-optimal solutions through dimensionality reduction for certain large-dimensional multi-objective optimization problems. In: 2006 IEEE Congress on Evolutionary Computation (CEC’2006), pp. 3353–3360, IEEE, Vancouver, BC, Canada (2006)

    Google Scholar 

  4. Saxena, D.K., Deb, K.: Non-linear dimensionality reduction procedures for certain large-dimensional multi-objective optimization problems: employing correntropy and a novel maximum variance unfolding. In: Obayashi, S., Deb, K., Poloni, C., Hiroyasu, T., Murata, T. (eds.) EMO 2007. LNCS, vol. 4403, pp. 772–787. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-70928-2_58

    Chapter  Google Scholar 

  5. Hong, W.-J., Yang, P., Tang, K.: Evolutionary computation for large-scale multi-objective optimization: a decade of progresses. Int. J. Autom. Comput. 18(2), 155–169 (2020). https://doi.org/10.1007/s11633-020-1253-0

    Article  Google Scholar 

  6. López J., Coello C., Chakraborty, D.: Objective reduction using a feature selection technique. In: Proceedings of the 10th Annual Conference on Genetic and Evolutionary Computation – GECCO’08 (2008). https://doi.org/10.1145/1389095.1389228

  7. Saxena, D.K., Duro, J.A., Tiwari, A., Deb, K., Zhang, Q.: Objective reduction in many-objective optimization: linear and nonlinear algorithms. In: IEEE Transactions on Evolutionary Computation 17(1), 77–99 (2013). https://doi.org/10.1109/tevc.2012.2185847

  8. Sinha, A., Saxena, D.K., Deb, K., Tiwari, A.: Using objective reduction and interactive procedure to handle many-objective optimization problems. In: Applied Soft Computing 13(1), 415–427 (2013). https://doi.org/10.1016/j.asoc.2012.08.030

  9. Duro, J.A., Saxena, K.D., Deb, K., Zhang, Q.: Machine learning based decision support for many-objective optimization problems. In: Neurocomputing 146, 30–47 (2014). https://doi.org/10.1016/j.neucom.2014.06.076

  10. Sanches, A., Cardoso, J.M., Delbem, A.C.: Identifying merge-beneficial software kernels for hardware implementation. In: Reconfigurable Computing and FPGAs (ReConFig), International Conference on, IEEE, pp. 74–79 (2011)

    Google Scholar 

  11. Gaspar-Cunha, A., Monaco, F., Sikora, J., Delbem, A.: Artificial intelligence in single screw polymer extrusion: learning from computational data. In: Engineering Applications of Artificial Intelligence, 116, 105397 (2022). https://doi.org/10.1016/j.engappai.2022.105397

  12. Li, M., Vitányi, P.: An Introduction to Kolmogorov Complexity and its Applications. In: Springer Science & Business Media (2013). https://doi.org/10.1007/978-0-387-49820-1

  13. Lui, L.T., Terrazas, G., Zenil, H., Alexander, C., Krasnogor, N.: Complexity measurement based on information theory and kolmogorov complexity. In: Artificial Life 21(2), 205224 (2015)

    Google Scholar 

  14. Newman, M.E.: Modularity and community structure in networks. In: Proceedings of the National Academy of Sciences 103(23), 8577–8582 (2006)

    Google Scholar 

  15. Newman, M.E.: Fast algorithm for detecting community structure in networks. In: Physical Review 69(6), 066133 (2004)

    Google Scholar 

  16. Silva, B.D.A., Cuminato, L.A., Delbem, A.C.B., Diniz, P.C., Bonato, V.: Application-oriented cache memorybconfiguration for energy efficiency in multi-cores. In: IET Computers Digital Techniques 9(1), 73–81 (2015)

    Google Scholar 

  17. Silva, B.A., Delbem, A.C.B., Deniz, P.C., Bonato, V.: Runtime mapping and scheduling for energy efficiency in heterogeneous multi-core systems. In: International Conference on Reconfigurable Computing and FPGAs, pp. 1–6, Mayan Riviera (2015)

    Google Scholar 

  18. Martins, L.G.A., Nobre, R., Delbem, A.C.B., Marques, E., Cardoso, J.M.P.: A clustering-based approach for exploring sequences of compiler optimizations. In: 2014 IEEE Congress on Evolutionary Computation (CEC), pp. 2436–2443 (2014) Beijing. https://doi.org/10.1109/CEC.2014.6900634

  19. Martins, L.G., Nobre, R., Delbem, A.C., Marques, E., Cardoso, J. M.: Exploration of compiler optimization sequences using clustering-based selection. In: The 2014 SIGPLAN/SIGBED conference on Languages, compilers and tools for embedded systems, pp. 63, Edinburgh (2014)

    Google Scholar 

  20. Moro, L.F.S., Lopes, A.M.Z., Delbem, A.C.B., Isotani, S.: Os desafios para minerar dados educacionais de forma rápida e intuitiva: o caso da damicore e a caracterização de alunos em ambientes de elearning. In: Workshop de desafios da computação aplicada à educação XXXIII Congresso da Sociedade Brasileira de Computação, pp. 1–10, Maceio (2013)

    Google Scholar 

  21. Moro, L.F., Rodriguez, C.L., Andrade, F.R.H., Delbem, A.C.B., Isotani, S.: Caracterização de alunos em ambientes de ensino online, in: Workshop de Mineração de Dados em Ambientes Virtuais do Ensino/Aprendizagem, Anais do Congresso Brasileiro de Informática na Educação, pp. 1–10, Dourados (2014)

    Google Scholar 

  22. Ferreira, E.J., Melo, V.V., Delbem, A.C.B.: Algoritmos de estimação de distribuição em mineração de dados: Diagnóstico do greening in citrus. In: II Escola Luso-Brasileira de Computação Evolutiva, p. 1, Guimarães, Portugal (2010)

    Google Scholar 

  23. Mansour, M.R., Alberto, L.F.C., Ramos, R.A., Delbem, A.C.: Identifying groups of preventive controls for a set of critical contingencies in the context of voltage stability. In: Circuits and Systems (ISCAS), IEEE International Symposium on, IEEE, pp. 453–456 (2013)

    Google Scholar 

  24. Soares, A., Râbelo, R., Delbem, A.: Optimization based on phylogram analysis. In: Expert Systems with Applications 78, pp. 32–50, ISSN 0957–4174 (2017). https://doi.org/10.1016/j.eswa.2017.02.012

  25. Fonseca, C.M., Guerreiro, A.P., López-Ibáñez, M., Paquete, L.: On the computation of the empirical attainment function. In: Takahashi, R.H.C., Deb, K., Wanner, E.F., Greco, S. (eds.) EMO 2011. LNCS, vol. 6576, pp. 106–120. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19893-9_8

    Chapter  Google Scholar 

  26. Goutsias, J.K.: Mutually compatible Gibbs random fields. In: IEEE Transactions on Information Theory 35(6), 1233–1249 (1989)

    Google Scholar 

  27. Pearl, J., Geiger, D., Verma, T.: Conditional independence and its representations. In: Kybernetika 25(7), 33–44 (1989)

    Google Scholar 

  28. Gaspar-Cunha, A., Covas, J.A.: The plasticating sequence in barrier extrusion screws part i: modeling. Polym. Eng. Sci. 54(8), 1791–1803 (2014)

    Article  Google Scholar 

  29. Gaspar-Cunha, A., Covas, J.A.: The plasticating sequence in barrier extrusion screws part ii: experimental assessment. Polym.-Plast. Technol. Eng. 53(14), 1456–1466 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to António Gaspar-Cunha .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gaspar-Cunha, A., Costa, P., Monaco, F., Delbem, A. (2023). Scalability of Multi-objective Evolutionary Algorithms for Solving Real-World Complex Optimization Problems. In: Emmerich, M., et al. Evolutionary Multi-Criterion Optimization. EMO 2023. Lecture Notes in Computer Science, vol 13970. Springer, Cham. https://doi.org/10.1007/978-3-031-27250-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-27250-9_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-27249-3

  • Online ISBN: 978-3-031-27250-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics