Abstract
The analysis of animal trade movements plays a crucial role in understanding the spreading of zoonotic diseases in livestock. This article addresses the problem of predicting sending or receiving animal transports by farms and other premises. Two recurrent neural network models are used for this task: classical Recurrent Neural Networks (RNNs) and Long Short-Term Memory (LSTM) networks. Optimization of neural network weights is performed using the MOEA/D algorithm with the goal of obtaining good trade-offs between the false positive (FP) and true positive (TP) rates. The results show, that neural classifiers optimized on historical data (in this article taken from the years 2017–2019) can be used for making predictions on future data (in this article taken from the year 2020) without a serious degradation of the classification quality. In the experiments, the overall performance of the RNN model was better than that of the LSTM model, however, the LSTM performed slightly better than the RNN in the range of lower FP rates. The results of this study motivate further research on using predictive models for optimizing counter-epidemic measures, for example vaccination campaigns.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bajardi, P., Barrat, A., Natale, F., Savini, L., Colizza, V.: Dynamical patterns of cattle trade movements. PLOS One 6(5), 1–19 (2011)
Belhaj, S., Tagina, M.: Modeling and prediction of the internet end-to-end delay using recurrent neural networks. J. Netw. 4, 528–535 (2009)
Berhich, A., Belouadha, F.Z., Kabbaj, M.I.: A location-dependent earthquake prediction using recurrent neural network algorithms. Soil Dyn. Earthq. Eng. 161, 107389 (2022)
Bigras-Poulin, M., Barfod, K., Mortensen, S., Greiner, M.: Relationship of trade patterns of the Danish swine industry animal movements network to potential disease spread. Prev. Vet. Med. 80(2), 143–165 (2007)
Büttner, K., Krieter, J., Traulsen, A., Traulsen, I.: Static network analysis of a pork supply chain in Northern Germany - characterisation of the potential spread of infectious diseases via animal movements. Prev. Vet. Med. 110(3), 418–428 (2013)
Capanema, C.G., de Oliveira, G.S., Silva, F.A., Silva, T.R., Loureiro, A.A.: Combining recurrent and graph neural networks to predict the next place’s category. Ad Hoc Netw. 138, 103016 (2023)
De Mulder, W., Bethard, S., Moens, M.F.: A survey on the application of recurrent neural networks to statistical language modeling. Comput. Speech Lang. 30(1), 61–98 (2015)
Deb, K., Agarwal, R.: Simulated binary crossover for continuous search space. Complex Syst. 9(2), 115–148 (1995)
Deb, K., Goyal, M.: A combined genetic adaptive search (GeneAS) for engineering design. Comput. Sci. Inform. 26, 30–45 (1996)
Eiben, A.E., Smith, J.E.: Introduction to Evolutionary Computing, 2nd edn. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-44874-8
Ezanno, P., Arnoux, S., Joly, A., Vermesse, R.: Rewiring cattle trade movements helps to control bovine paratuberculosis at a regional scale. Prev. Vet. Med. 198, 105529 (2022)
Hidano, A., Carpenter, T.E., Stevenson, M.A., Gates, M.C.: Evaluating the efficacy of regionalisation in limiting high-risk livestock trade movements. Prev. Vet. Med. 133, 31–41 (2016)
Li, H., Zhang, Q.: Multiobjective optimization problems with complicated Pareto sets, MOEA/D and NSGA-II. IEEE Trans. Evol. Comput. 13(2), 284–302 (2009)
Liu, C., Kroll, A.: Performance impact of mutation operators of a subpopulation-based genetic algorithm for multi-robot task allocation problems. Springerplus 5(1), 1–29 (2016). https://doi.org/10.1186/s40064-016-3027-2
Marhon, S.A., Cameron, C.J.F., Kremer, S.C.: Recurrent neural networks. In: Bianchini, M., Maggini, M., Jain, L.C. (eds.) Handbook on Neural Information Processing. Intelligent Systems Reference Library, vol. 49, pp. 29–65. Springer, Berlin, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36657-4_2
Marsot, M., Canini, L., Janicot, S., Lambert, J., Vergu, E., Durand, B.: Predicting veal-calf trading events in France. Prev. Vet. Med. 209, 105782 (2022)
Michalak, K.: The Sim-EA algorithm with operator autoadaptation for the multiobjective firefighter problem. In: Ochoa, G., Chicano, F. (eds.) EvoCOP 2015. LNCS, vol. 9026, pp. 184–196. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-16468-7_16
Moller, M.F.: A scaled conjugate gradient algorithm for fast supervised learning. Neural Netw. 6, 525–533 (1993)
Salehinejad, H., Sankar, S., Barfett, J., Colak, E., Valaee, S.: Recent advances in recurrent neural networks (2018)
Salem, F.M.: Recurrent Neural Networks. Springer, Heidelberg (2022)
Sendra-Arranz, R., Gutiérrez, A.: A long short-term memory artificial neural network to predict daily HVAC consumption in buildings. Energy Build. 216, 109952 (2020)
Sharma, S.D., Sharma, S., Singh, R., Gehlot, A., Priyadarshi, N., Twala, B.: Deep recurrent neural network assisted stress detection system for working professionals. Appl. Sci. 12(17), 8678 (2022)
Vidondo, B., Voelkl, B.: Dynamic network measures reveal the impact of cattle markets and alpine summering on the risk of epidemic outbreaks in the Swiss cattle population. BMC Vet. Res. 14, 88 (2018)
Vlad, I.M., Beciu, S., Ladaru, G.R.: Seasonality and forecasting in the Romanian trade with live animals. Agric. Agric. Sci. Proc. 6, 712–719 (2015). Conference Agriculture for Life, Life for Agriculture
Wen, L., Zhou, K., Yang, S.: Load demand forecasting of residential buildings using a deep learning model. Electr. Power Syst. Res. 179, 106073 (2020)
Xu, K., Wu, L., Wang, Z., Feng, Y., Sheinin, V.: Graph2Seq: graph to sequence learning with attention-based neural networks. CoRR abs/1804.00823 (2018)
Yu, Y., Si, X., Hu, C., Zhang, J.: A review of recurrent neural networks: LSTM Cells and network architectures. Neural Comput. 31(7), 1235–1270 (2019)
Zhang, Q., Li, H.: MOEA/D: a multiobjective evolutionary algorithm based on decomposition. IEEE Trans. Evol. Comput. 11(6), 712–731 (2007)
Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C.M., da Fonseca, V.G.: Performance assessment of multiobjective optimizers: an analysis and review. IEEE Trans. Evol. Comput. 7, 117–132 (2002)
Acknowledgment
This work was supported by the Polish National Science Centre under grant no. 2015/19/D/HS4/02574. We acknowledge that the results of this research have been achieved using the DECI resource ARIS based in Greece at the National Infrastructures for Research and Technology S.A. (GRNET) with support from the PRACE aisbl under project ID DYNNETOPT. The authors would like to acknowledge Informatica Area Prevenzione of the ASL CN1 of Piedmont for the data and useful discussion.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Michalak, K., Giacobini, M. (2023). Multiobjective Optimization of Evolutionary Neural Networks for Animal Trade Movements Prediction. In: Emmerich, M., et al. Evolutionary Multi-Criterion Optimization. EMO 2023. Lecture Notes in Computer Science, vol 13970. Springer, Cham. https://doi.org/10.1007/978-3-031-27250-9_38
Download citation
DOI: https://doi.org/10.1007/978-3-031-27250-9_38
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-27249-3
Online ISBN: 978-3-031-27250-9
eBook Packages: Computer ScienceComputer Science (R0)