Abstract
The study of inner models was initiated by Gödel’s analysis of the constructible universe. Later, the study of canonical inner models with large cardinals, e.g., measurable cardinals, strong cardinals or Woodin cardinals, was pioneered by Jensen, Mitchell, Steel, and others. Around the same time, the study of infinite two-player games was driven forward by Martin’s proof of analytic determinacy from a measurable cardinal, Borel determinacy from ZFC, and Martin and Steel’s proof of levels of projective determinacy from Woodin cardinals with a measurable cardinal on top. First Woodin and later Neeman improved the result in the projective hierarchy by showing that in fact the existence of a countable iterable model, a mouse, with Woodin cardinals and a top measure suffices to prove determinacy in the projective hierarchy. This opened up the possibility for an optimal result stating the equivalence between local determinacy hypotheses and the existence of mice in the projective hierarchy. This article outlines the main concepts and results connecting determinacy hypotheses with the existence of mice with large cardinals as well as recent progress in the area.
Supported by L’ORÉAL Austria, in collaboration with the Austrian UNESCO Commission and in cooperation with the Austrian Academy of Sciences - Fellowship Determinacy and Large Cardinals and the Austrian Science Fund (FWF) under Elise Richter grant number V844, international project number I6087, and START grant number Y1498.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Aguilera, J.P., Müller, S.: Projective games on the reals. Notre Dame J. Formal Logic 61, 573–589 (2020). https://doi.org/10.1215/00294527-2020-0027
Aguilera, J.P., Müller, S.: The consistency strength of long projective determinacy. J. Symb. Log. 85(1), 338–366 (2020). https://doi.org/10.1017/jsl.2019.78
Aguilera, J.P., Müller, S., Schlicht, P.: Long games and \(\sigma \)-projective sets. Ann. Pure Appl. Log. 172, 102939 (2021). https://doi.org/10.1016/j.apal.2020.102939
Andretta, A., Neeman, I., Steel, J.R.: The domestic levels of \(K^c\) are iterable. Israel J. Math. 125, 157–201 (2001). https://doi.org/10.1007/BF02773379
Atmai, R., Sargsyan, G.: Hod up to \(AD_{\mathbb{R} }\) + \(\Theta \) is measurable. Ann. Pure Appl. Log. 170(1), 95–108 (2019). https://doi.org/10.1016/j.apal.2018.08.013
Carroy, R., Medini, A., Müller, S.: Every zero-dimensional homogeneous space is strongly homogeneous under determinacy. J. Math. Log. 20, 2050015 (2020). https://doi.org/10.1142/S0219061320500154
Casacuberta, C., Scevenels, D., Smith, J.H.: Implications of large-cardinal principles in homotopical localization. Adv. Math. 197(1), 120–139 (2005). https://doi.org/10.1016/j.aim.2004.10.001
Dales, H.G., Woodin, W.H.: An Introduction to Independence for Analysts. London Mathematical Society Lecture Note series. Cambridge University Press, Cambridge (1987). https://doi.org/10.1017/CBO9780511662256
Davis, M.: Infinite games of perfect information. In: Dresher, M., Shapley, L.S., Tucker, A.W. (eds.) Advances in Game Theory, vol. 52, pp. 85–101 (1964)
Eklof, P.C., Mekler, A.H.: Almost Free Modules, North-Holland Mathematical Library, vol. 65. North-Holland Publishing Co. (2002)
Farah, I.: All automorphisms of the Calkin algebra are inner. Ann. Math. 173(2), 619–661 (2011). https://doi.org/10.4007/annals.2011.173.2.1
Feng, Q., Magidor, M., Woodin, W.H.: Universally baire sets of reals. In: Judah, H., Just, W., Woodin, W.H. (eds.) Set Theory of the Continuum. Mathematical Sciences Research Institute Publications, vol. 26, pp. 203–242. Springer, Cham (1992). https://doi.org/10.1007/978-1-4613-9754-0_15
Fleissner, W.G.: If all normal Moore spaces are metrizable, then there is an inner model with a measurable cardinal. Trans. Amer. Math. Soc. 273, 365–373 (1982). https://doi.org/10.1090/S0002-9947-1982-0664048-8
Gale, D., Stewart, F.M.: Infinite games with perfect information. In: Kuhn, H.W., Tucker, A.W. (eds.) Contributions to the Theory of Games, vol. 2, pp. 245–266 (1953)
Harrington, L.: Analytic determinacy and \(0^\#\). J. Symb. Log. 43, 685–693 (1978). https://doi.org/10.2307/2273508
Jensen, R.B.: The fine structure of the constructible hierarchy. Ann. Math. Logic 4, 229–308 (1972). https://doi.org/10.1016/0003-4843(72)90001-0
Jensen, R.B., Schimmerling, E., Schindler, R., Steel, J.R.: Stacking mice. J. Symb. Log. 74(1), 315–335 (2009). https://doi.org/10.2178/jsl/1231082314
Kechris, A., Solovay, R.: On the relative consistency strength of determinacy hypotheses. Trans. Amer. Math. Soc. 290(1), 179–211 (1985). https://doi.org/10.1090/S0002-9947-1985-0787961-2
Larson, P.B.: A brief history of determinacy. In: Kechris, A.S., Löwe, B., Steel, J.R. (eds.) Large Cardinals, Determinacy and Other Topics, pp. 3–60 (2020). https://doi.org/10.1017/9781316863534.002
Larson, P.B., Sargsyan, G.: Failure of square in \(\mathbb{P} _{\operatorname{max}}\) extensions of Chang models (2021)
Larson, P.B., Sargsyan, G., Wilson, T.M.: A model of the Axiom of Determinacy in which every set of reals is universally Baire (2018)
Laver, R.: On the consistency of Borel’s conjecture. Acta Math. 137, 151–169 (1976). https://doi.org/10.1007/BF02392416
Martin, D.A.: Measurable cardinals and analytic games. Fundam. Math. 66, 287–291 (1970). https://doi.org/10.4064/fm-66-3-287-291
Martin, D.A.: Borel determinacy. Ann. Math. 102(2), 363–371 (1975). https://doi.org/10.2307/1971035
Martin, D.A., Steel, J.R.: A proof of projective determinacy. J. Amer. Math. Soc. 2(1), 71–125 (1989). https://doi.org/10.2307/1990913
Mitchell, W.J., Steel, J.R.: Fine Structure and Iteration Trees. Lecture Notes on Logistics, vol. 3. Springer-Verlag, New York (1994)
Uhlenbrock (now Müller), S.: Pure and Hybrid Mice with Finitely Many Woodin Cardinals from Levels of Determinacy. Ph.D. thesis, University of Münster (2016)
Müller, S.: The axiom of determinacy implies dependent choice in mice. Math. Logic Quarter. 65(3), 370–375 (2019). https://doi.org/10.1002/malq.201800077
Müller, S.: Four papers on the large cardinal strength of \(\operatorname{PFA}\) via core model induction. Bull. Symb. Log. 26(1), 89–92 (2020). https://doi.org/10.1017/bsl.2020.6
Müller, S.: The consistency strength of determinacy when all sets are universally Baire (2021). Submitted
Müller, S., Sargsyan, G.: HOD in inner models with Woodin cardinals. J. Symb. Log. (2021). https://doi.org/10.1017/jsl.2021.61
Müller, S., Schindler, R., Woodin, W.: Mice with finitely many woodin cardinals from optimal determinacy hypotheses. J. Math. Log. 20, 1950013 (2020). https://doi.org/10.1142/S0219061319500132
Neeman, I.: Optimal proofs of determinacy. Bull. Symb. Log. 1(3), 327–339 (1995). https://doi.org/10.2307/421159
Neeman, I.: Games of Countable Length. In: Cooper, S.B., Truss, J.K. (eds.) Sets and Proofs, London Mathematical Society Lecture Note series, pp. 159–196 (1999). https://doi.org/10.1017/CBO9781107325944.009
Neeman, I.: Inner models in the region of a Woodin limit of Woodin cardinals. Ann. Pure Appl. Log. 116(1), 67–155 (2002). https://doi.org/10.1016/S0168-0072(01)00103-8
Neeman, I.: Optimal Proofs of Determinacy II. J. Math. Log. 2(2), 227–258 (2002). https://doi.org/10.1142/S0219061302000175
Neeman, I.: The Determinacy of Long Games, De Gruyter series in logic and its applications, vol. 7. De Gruyter (2004). https://doi.org/10.1515/9783110200065
Nyikos, P.J.: A provisional solution to the normal Moore space problem. Proc. Amer. Math. Soc. 78, 429–435 (1980). https://doi.org/10.1090/S0002-9939-1980-0553389-4
Sargsyan, G.: Descriptive inner model theory. Bull. Symbolic Logic 19(1), 1–55 (2013). https://doi.org/10.2178/bsl.1901010
Sargsyan, G.: Hod Mice and the Mouse Set Conjecture. Memoirs of the American Mathematical Society, vol. 236 (2015). https://doi.org/10.1090/memo/1111
Sargsyan, G.: Translation procedures in descriptive inner model theory. In: Foundations of Mathematics, American Mathematical Society, vol. 690, pp. 205–223 (2017). https://doi.org/10.1090/conm/690/13869
Sargsyan, G.: Announcement of recent results in descriptive inner model theory (2021)
Sargsyan, G., Trang, N.D.: The Largest Suslin Axiom (2016)
Sargsyan, G., Trang, N.D.: The exact consistency strength of the generic absoluteness for the universally Baire sets (2019)
Sargsyan, G., Trang, N.D.: Sealing from iterability. Trans. Amer. Math. Soc. Ser. B 8, 229–248 (2021). https://doi.org/10.1090/btran/65
Sargsyan, G., Trang, N.D.: Sealing of the universally Baire sets. Bull. Symb. Log. (2021). https://doi.org/10.1017/bsl.2021.29
Schilling, K., Vaught, R.: Borel games and the Baire property. Trans. Amer. Math. Soc. 279(1), 411–428 (1983). https://doi.org/10.2307/1999393
Schindler, R., Steel, J.R., Zeman, M.: Deconstructing inner model theory. J. Symb. Log. 67, 721–736 (2002). https://doi.org/10.2178/jsl/1190150106
Shelah, S.: Infinite abelian groups, Whitehead problem and some constructions. Israel J. Math. 18, 243–256 (1974). https://doi.org/10.1007/BF02757281
Steel, J.R.: Long games. In: Cabal Seminar 81–85, Lecture Notes in Mathematical 1333, pp. 56–97. Springer Verlag, Cham (1988). https://doi.org/10.1007/BFb0084970
Steel, J.R.: \(\operatorname{HOD}^{L(\mathbb{R} )}\) is a core model below \(\Theta \). Bull. Symb. Log. 1(1), 75–84 (1995). https://doi.org/10.2307/420947
Steel, J.R.: An optimal consistency strength lower bound for \(\sf AD _{R\sf }\) (2008)
Steel, J.R.: Derived models associated to mice. In: Computational Prospects of Infinity - Part I: Tutorials, vol. 14, pp. 105–193. World Scientific (2008). https://doi.org/10.1142/9789812794055_0003
Steel, J.R.: The derived model theorem. In: Cooper, S.B., Geuvers, H., Pillay, A., Vänänen, J. (eds.) Logic Colloquium 2006, pp. 280–327 (2009). https://doi.org/10.1017/CBO9780511605321.014
Steel, J.R.: An Outline of Inner Model Theory, pp. 1595–1684. Springer, Cham (2010). https://doi.org/10.1007/978-1-4020-5764-9_20
Steel, J.R., Woodin, W.H.: HOD as a core model. In: Kechris, A.S., Löwe, B., Steel, J.R. (eds.) Ordinal Definability and Recursion Theory, pp. 257–346 (2016). https://doi.org/10.1017/CBO9781139519694.010
Trang, N.D.: Generalized Solovay Measures, the HOD Analysis, and the Core Model Induction. Ph.D. thesis, University of California at Berkeley (2013)
Trang, N.D.: \( HOD\) in natural models of \( AD ^{+}\). Ann. Pure Appl. Log. 165(10), 1533–1556 (2014). https://doi.org/10.1016/j.apal.2014.04.006
Wolfe, P.: The strict determinateness of certain infinite games. Pac. J. Math. 5, 841–847 (1955). https://doi.org/10.2140/pjm.1955.5.841
Zeman, M.: Inner Models and Large Cardinals, De Gruyter series in logic and its applications, vol. 5. De Gruyter (2002). https://doi.org/10.1515/9783110857818
Zhu, Y.: Realizing an \( AD^{+}\) model as a derived model of a premouse. Ann. Pure Appl. Log. 166, 1275–1364 (2015). https://doi.org/10.1016/j.apal.2015.05.002
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Müller, S. (2023). Determinacy Axioms and Large Cardinals. In: Banerjee, M., Sreejith, A.V. (eds) Logic and Its Applications. ICLA 2023. Lecture Notes in Computer Science, vol 13963. Springer, Cham. https://doi.org/10.1007/978-3-031-26689-8_5
Download citation
DOI: https://doi.org/10.1007/978-3-031-26689-8_5
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-26688-1
Online ISBN: 978-3-031-26689-8
eBook Packages: Computer ScienceComputer Science (R0)