[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Determinacy Axioms and Large Cardinals

  • Conference paper
  • First Online:
Logic and Its Applications (ICLA 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13963))

Included in the following conference series:

  • 293 Accesses

Abstract

The study of inner models was initiated by Gödel’s analysis of the constructible universe. Later, the study of canonical inner models with large cardinals, e.g., measurable cardinals, strong cardinals or Woodin cardinals, was pioneered by Jensen, Mitchell, Steel, and others. Around the same time, the study of infinite two-player games was driven forward by Martin’s proof of analytic determinacy from a measurable cardinal, Borel determinacy from ZFC, and Martin and Steel’s proof of levels of projective determinacy from Woodin cardinals with a measurable cardinal on top. First Woodin and later Neeman improved the result in the projective hierarchy by showing that in fact the existence of a countable iterable model, a mouse, with Woodin cardinals and a top measure suffices to prove determinacy in the projective hierarchy. This opened up the possibility for an optimal result stating the equivalence between local determinacy hypotheses and the existence of mice in the projective hierarchy. This article outlines the main concepts and results connecting determinacy hypotheses with the existence of mice with large cardinals as well as recent progress in the area.

Supported by L’ORÉAL Austria, in collaboration with the Austrian UNESCO Commission and in cooperation with the Austrian Academy of Sciences - Fellowship Determinacy and Large Cardinals and the Austrian Science Fund (FWF) under Elise Richter grant number V844, international project number I6087, and START grant number Y1498.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 43.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 54.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Aguilera, J.P., Müller, S.: Projective games on the reals. Notre Dame J. Formal Logic 61, 573–589 (2020). https://doi.org/10.1215/00294527-2020-0027

    Article  MathSciNet  MATH  Google Scholar 

  2. Aguilera, J.P., Müller, S.: The consistency strength of long projective determinacy. J. Symb. Log. 85(1), 338–366 (2020). https://doi.org/10.1017/jsl.2019.78

    Article  MathSciNet  MATH  Google Scholar 

  3. Aguilera, J.P., Müller, S., Schlicht, P.: Long games and \(\sigma \)-projective sets. Ann. Pure Appl. Log. 172, 102939 (2021). https://doi.org/10.1016/j.apal.2020.102939

    Article  MathSciNet  MATH  Google Scholar 

  4. Andretta, A., Neeman, I., Steel, J.R.: The domestic levels of \(K^c\) are iterable. Israel J. Math. 125, 157–201 (2001). https://doi.org/10.1007/BF02773379

    Article  MathSciNet  MATH  Google Scholar 

  5. Atmai, R., Sargsyan, G.: Hod up to \(AD_{\mathbb{R} }\) + \(\Theta \) is measurable. Ann. Pure Appl. Log. 170(1), 95–108 (2019). https://doi.org/10.1016/j.apal.2018.08.013

    Article  MathSciNet  MATH  Google Scholar 

  6. Carroy, R., Medini, A., Müller, S.: Every zero-dimensional homogeneous space is strongly homogeneous under determinacy. J. Math. Log. 20, 2050015 (2020). https://doi.org/10.1142/S0219061320500154

    Article  MathSciNet  MATH  Google Scholar 

  7. Casacuberta, C., Scevenels, D., Smith, J.H.: Implications of large-cardinal principles in homotopical localization. Adv. Math. 197(1), 120–139 (2005). https://doi.org/10.1016/j.aim.2004.10.001

    Article  MathSciNet  MATH  Google Scholar 

  8. Dales, H.G., Woodin, W.H.: An Introduction to Independence for Analysts. London Mathematical Society Lecture Note series. Cambridge University Press, Cambridge (1987). https://doi.org/10.1017/CBO9780511662256

  9. Davis, M.: Infinite games of perfect information. In: Dresher, M., Shapley, L.S., Tucker, A.W. (eds.) Advances in Game Theory, vol. 52, pp. 85–101 (1964)

    Google Scholar 

  10. Eklof, P.C., Mekler, A.H.: Almost Free Modules, North-Holland Mathematical Library, vol. 65. North-Holland Publishing Co. (2002)

    Google Scholar 

  11. Farah, I.: All automorphisms of the Calkin algebra are inner. Ann. Math. 173(2), 619–661 (2011). https://doi.org/10.4007/annals.2011.173.2.1

    Article  MathSciNet  MATH  Google Scholar 

  12. Feng, Q., Magidor, M., Woodin, W.H.: Universally baire sets of reals. In: Judah, H., Just, W., Woodin, W.H. (eds.) Set Theory of the Continuum. Mathematical Sciences Research Institute Publications, vol. 26, pp. 203–242. Springer, Cham (1992). https://doi.org/10.1007/978-1-4613-9754-0_15

  13. Fleissner, W.G.: If all normal Moore spaces are metrizable, then there is an inner model with a measurable cardinal. Trans. Amer. Math. Soc. 273, 365–373 (1982). https://doi.org/10.1090/S0002-9947-1982-0664048-8

    Article  MathSciNet  MATH  Google Scholar 

  14. Gale, D., Stewart, F.M.: Infinite games with perfect information. In: Kuhn, H.W., Tucker, A.W. (eds.) Contributions to the Theory of Games, vol. 2, pp. 245–266 (1953)

    Google Scholar 

  15. Harrington, L.: Analytic determinacy and \(0^\#\). J. Symb. Log. 43, 685–693 (1978). https://doi.org/10.2307/2273508

    Article  MathSciNet  MATH  Google Scholar 

  16. Jensen, R.B.: The fine structure of the constructible hierarchy. Ann. Math. Logic 4, 229–308 (1972). https://doi.org/10.1016/0003-4843(72)90001-0

    Article  MathSciNet  MATH  Google Scholar 

  17. Jensen, R.B., Schimmerling, E., Schindler, R., Steel, J.R.: Stacking mice. J. Symb. Log. 74(1), 315–335 (2009). https://doi.org/10.2178/jsl/1231082314

    Article  MathSciNet  MATH  Google Scholar 

  18. Kechris, A., Solovay, R.: On the relative consistency strength of determinacy hypotheses. Trans. Amer. Math. Soc. 290(1), 179–211 (1985). https://doi.org/10.1090/S0002-9947-1985-0787961-2

    Article  MathSciNet  MATH  Google Scholar 

  19. Larson, P.B.: A brief history of determinacy. In: Kechris, A.S., Löwe, B., Steel, J.R. (eds.) Large Cardinals, Determinacy and Other Topics, pp. 3–60 (2020). https://doi.org/10.1017/9781316863534.002

  20. Larson, P.B., Sargsyan, G.: Failure of square in \(\mathbb{P} _{\operatorname{max}}\) extensions of Chang models (2021)

    Google Scholar 

  21. Larson, P.B., Sargsyan, G., Wilson, T.M.: A model of the Axiom of Determinacy in which every set of reals is universally Baire (2018)

    Google Scholar 

  22. Laver, R.: On the consistency of Borel’s conjecture. Acta Math. 137, 151–169 (1976). https://doi.org/10.1007/BF02392416

    Article  MathSciNet  MATH  Google Scholar 

  23. Martin, D.A.: Measurable cardinals and analytic games. Fundam. Math. 66, 287–291 (1970). https://doi.org/10.4064/fm-66-3-287-291

    Article  MathSciNet  MATH  Google Scholar 

  24. Martin, D.A.: Borel determinacy. Ann. Math. 102(2), 363–371 (1975). https://doi.org/10.2307/1971035

    Article  MathSciNet  MATH  Google Scholar 

  25. Martin, D.A., Steel, J.R.: A proof of projective determinacy. J. Amer. Math. Soc. 2(1), 71–125 (1989). https://doi.org/10.2307/1990913

    Article  MathSciNet  MATH  Google Scholar 

  26. Mitchell, W.J., Steel, J.R.: Fine Structure and Iteration Trees. Lecture Notes on Logistics, vol. 3. Springer-Verlag, New York (1994)

    Google Scholar 

  27. Uhlenbrock (now Müller), S.: Pure and Hybrid Mice with Finitely Many Woodin Cardinals from Levels of Determinacy. Ph.D. thesis, University of Münster (2016)

    Google Scholar 

  28. Müller, S.: The axiom of determinacy implies dependent choice in mice. Math. Logic Quarter. 65(3), 370–375 (2019). https://doi.org/10.1002/malq.201800077

    Article  MathSciNet  MATH  Google Scholar 

  29. Müller, S.: Four papers on the large cardinal strength of \(\operatorname{PFA}\) via core model induction. Bull. Symb. Log. 26(1), 89–92 (2020). https://doi.org/10.1017/bsl.2020.6

    Article  Google Scholar 

  30. Müller, S.: The consistency strength of determinacy when all sets are universally Baire (2021). Submitted

    Google Scholar 

  31. Müller, S., Sargsyan, G.: HOD in inner models with Woodin cardinals. J. Symb. Log. (2021). https://doi.org/10.1017/jsl.2021.61

  32. Müller, S., Schindler, R., Woodin, W.: Mice with finitely many woodin cardinals from optimal determinacy hypotheses. J. Math. Log. 20, 1950013 (2020). https://doi.org/10.1142/S0219061319500132

    Article  MathSciNet  MATH  Google Scholar 

  33. Neeman, I.: Optimal proofs of determinacy. Bull. Symb. Log. 1(3), 327–339 (1995). https://doi.org/10.2307/421159

    Article  MathSciNet  MATH  Google Scholar 

  34. Neeman, I.: Games of Countable Length. In: Cooper, S.B., Truss, J.K. (eds.) Sets and Proofs, London Mathematical Society Lecture Note series, pp. 159–196 (1999). https://doi.org/10.1017/CBO9781107325944.009

  35. Neeman, I.: Inner models in the region of a Woodin limit of Woodin cardinals. Ann. Pure Appl. Log. 116(1), 67–155 (2002). https://doi.org/10.1016/S0168-0072(01)00103-8

    Article  MathSciNet  MATH  Google Scholar 

  36. Neeman, I.: Optimal Proofs of Determinacy II. J. Math. Log. 2(2), 227–258 (2002). https://doi.org/10.1142/S0219061302000175

    Article  MathSciNet  MATH  Google Scholar 

  37. Neeman, I.: The Determinacy of Long Games, De Gruyter series in logic and its applications, vol. 7. De Gruyter (2004). https://doi.org/10.1515/9783110200065

  38. Nyikos, P.J.: A provisional solution to the normal Moore space problem. Proc. Amer. Math. Soc. 78, 429–435 (1980). https://doi.org/10.1090/S0002-9939-1980-0553389-4

    Article  MathSciNet  MATH  Google Scholar 

  39. Sargsyan, G.: Descriptive inner model theory. Bull. Symbolic Logic 19(1), 1–55 (2013). https://doi.org/10.2178/bsl.1901010

    Article  MathSciNet  MATH  Google Scholar 

  40. Sargsyan, G.: Hod Mice and the Mouse Set Conjecture. Memoirs of the American Mathematical Society, vol. 236 (2015). https://doi.org/10.1090/memo/1111

  41. Sargsyan, G.: Translation procedures in descriptive inner model theory. In: Foundations of Mathematics, American Mathematical Society, vol. 690, pp. 205–223 (2017). https://doi.org/10.1090/conm/690/13869

  42. Sargsyan, G.: Announcement of recent results in descriptive inner model theory (2021)

    Google Scholar 

  43. Sargsyan, G., Trang, N.D.: The Largest Suslin Axiom (2016)

    Google Scholar 

  44. Sargsyan, G., Trang, N.D.: The exact consistency strength of the generic absoluteness for the universally Baire sets (2019)

    Google Scholar 

  45. Sargsyan, G., Trang, N.D.: Sealing from iterability. Trans. Amer. Math. Soc. Ser. B 8, 229–248 (2021). https://doi.org/10.1090/btran/65

    Article  MathSciNet  MATH  Google Scholar 

  46. Sargsyan, G., Trang, N.D.: Sealing of the universally Baire sets. Bull. Symb. Log. (2021). https://doi.org/10.1017/bsl.2021.29

    Article  MathSciNet  MATH  Google Scholar 

  47. Schilling, K., Vaught, R.: Borel games and the Baire property. Trans. Amer. Math. Soc. 279(1), 411–428 (1983). https://doi.org/10.2307/1999393

    Article  MathSciNet  MATH  Google Scholar 

  48. Schindler, R., Steel, J.R., Zeman, M.: Deconstructing inner model theory. J. Symb. Log. 67, 721–736 (2002). https://doi.org/10.2178/jsl/1190150106

    Article  MathSciNet  MATH  Google Scholar 

  49. Shelah, S.: Infinite abelian groups, Whitehead problem and some constructions. Israel J. Math. 18, 243–256 (1974). https://doi.org/10.1007/BF02757281

    Article  MathSciNet  MATH  Google Scholar 

  50. Steel, J.R.: Long games. In: Cabal Seminar 81–85, Lecture Notes in Mathematical 1333, pp. 56–97. Springer Verlag, Cham (1988). https://doi.org/10.1007/BFb0084970

  51. Steel, J.R.: \(\operatorname{HOD}^{L(\mathbb{R} )}\) is a core model below \(\Theta \). Bull. Symb. Log. 1(1), 75–84 (1995). https://doi.org/10.2307/420947

    Article  MathSciNet  MATH  Google Scholar 

  52. Steel, J.R.: An optimal consistency strength lower bound for \(\sf AD _{R\sf }\) (2008)

    Google Scholar 

  53. Steel, J.R.: Derived models associated to mice. In: Computational Prospects of Infinity - Part I: Tutorials, vol. 14, pp. 105–193. World Scientific (2008). https://doi.org/10.1142/9789812794055_0003

  54. Steel, J.R.: The derived model theorem. In: Cooper, S.B., Geuvers, H., Pillay, A., Vänänen, J. (eds.) Logic Colloquium 2006, pp. 280–327 (2009). https://doi.org/10.1017/CBO9780511605321.014

  55. Steel, J.R.: An Outline of Inner Model Theory, pp. 1595–1684. Springer, Cham (2010). https://doi.org/10.1007/978-1-4020-5764-9_20

  56. Steel, J.R., Woodin, W.H.: HOD as a core model. In: Kechris, A.S., Löwe, B., Steel, J.R. (eds.) Ordinal Definability and Recursion Theory, pp. 257–346 (2016). https://doi.org/10.1017/CBO9781139519694.010

  57. Trang, N.D.: Generalized Solovay Measures, the HOD Analysis, and the Core Model Induction. Ph.D. thesis, University of California at Berkeley (2013)

    Google Scholar 

  58. Trang, N.D.: \( HOD\) in natural models of \( AD ^{+}\). Ann. Pure Appl. Log. 165(10), 1533–1556 (2014). https://doi.org/10.1016/j.apal.2014.04.006

    Article  MathSciNet  MATH  Google Scholar 

  59. Wolfe, P.: The strict determinateness of certain infinite games. Pac. J. Math. 5, 841–847 (1955). https://doi.org/10.2140/pjm.1955.5.841

    Article  MathSciNet  MATH  Google Scholar 

  60. Zeman, M.: Inner Models and Large Cardinals, De Gruyter series in logic and its applications, vol. 5. De Gruyter (2002). https://doi.org/10.1515/9783110857818

  61. Zhu, Y.: Realizing an \( AD^{+}\) model as a derived model of a premouse. Ann. Pure Appl. Log. 166, 1275–1364 (2015). https://doi.org/10.1016/j.apal.2015.05.002

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandra Müller .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Müller, S. (2023). Determinacy Axioms and Large Cardinals. In: Banerjee, M., Sreejith, A.V. (eds) Logic and Its Applications. ICLA 2023. Lecture Notes in Computer Science, vol 13963. Springer, Cham. https://doi.org/10.1007/978-3-031-26689-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-26689-8_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-26688-1

  • Online ISBN: 978-3-031-26689-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics