[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Bi-matching Mechanism to Combat Long-tail Senses of Word Sense Disambiguation

  • Conference paper
  • First Online:
Machine Learning and Knowledge Discovery in Databases (ECML PKDD 2022)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13714))

Abstract

The long-tail phenomenon of word sense distribution in linguistics causes Word Sense Disambiguation (WSD) to face both head senses with a large number of samples and tail senses with only a few samples. Traditional recognition methods are suitable for head senses with sufficient training samples, but they cannot effectively deal with tail senses. Inspired by the diverse memory and recognition abilities of children’s linguistic behavior, we propose a bi-matching mechanism approach for WSD. Considering that tail senses are often presented in the form of fixed collocations, a collocation feature matching method suitable for tail senses is designed; the traditional definition matching method is used for head senses; finally, the two matching methods are combined to construct a WSD model with the bi-matching mechanism (called Bi-MWSD). Bi-MWSD can effectively combat the difficulty of identifying the tail senses due to insufficient training samples. The experiments are implemented in the standard English all-words WSD evaluation framework and the training data augmented evaluation framework. The experimental results outperform the baseline models and achieve state-of-the-art performance under the data augmentation evaluation framework.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 63.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 79.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://wordnetweb.princeton.edu/perl/webwn?s=play.

  2. 2.

    http://lcl.uniroma1.it/wsdeval/training-data.

  3. 3.

    https://wordnetcode.princeton.edu/glosstag.shtml.

  4. 4.

    https://www.python.org/.

  5. 5.

    https://pytorch.org/.

  6. 6.

    https://huggingface.co/transformers/v4.5.1/.

References

  1. Navigli, R., Camacho-Collados, J., Raganato, A.: Word sense disambiguation: a unified evaluation framework and empirical comparison. In: EACL (2017)

    Google Scholar 

  2. Navigli, R.: Word sense disambiguation: a survey. ACM Comput. Surv. 41, 1–69 (2009)

    Article  Google Scholar 

  3. Bevilacqua, M., Pasini, T., Raganato, A., Navigli, R.: Recent trends in word sense disambiguation: a survey. In: IJCAI (2021)

    Google Scholar 

  4. Neale, S., Gomes, L.-M., Agirre, E., Lacalle, O.-L., Branco, A.-H.: Word sense-aware machine translation: including senses as contextual features for improved translation models. In: LREC (2016)

    Google Scholar 

  5. Rios Gonzales, A., Mascarell, L., Sennrich, R.: Improving word sense disambiguation in neural machine translation with sense embeddings. In: WMT (2017)

    Google Scholar 

  6. Dewadkar, D.-A., Haribhakta, Y.-V., Kulkarni, P.-A., Balvir, P.-D.: Unsupervised word sense disambiguation in natural language understanding. In: ICAI (2010)

    Google Scholar 

  7. Mills, M.-T., Bourbakis, N.-G.: Graph-based methods for natural language processing and understanding-a survey and analysis. IEEE Trans. Syst. Man Cybern. Syst. 44, 59–71 (2014)

    Article  Google Scholar 

  8. Li, W., Madabushi, H.-T., Lee, M.-G.: UoB_UK at SemEval 2021 Task 2: Zero-shot and few-shot learning for multi-lingual and cross-lingual word sense disambiguation. In: SEMEVAL (2021)

    Google Scholar 

  9. Kumar, S., Jat, S., Saxena, K., Talukdar, P.-P.: Zero-shot word sense disambiguation using sense definition embeddings. In: ACL (2019)

    Google Scholar 

  10. Blevins, T., Zettlemoyer, L.: Moving down the long tail of word sense disambiguation with gloss informed bi-encoders. In: ACL (2020)

    Google Scholar 

  11. Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: NAACL (2019)

    Google Scholar 

  12. Huang, L., Sun, C., Qiu, X., Huang, X.: GlossBERT: BERT for word sense disambiguation with gloss knowledge. In: EMNLP (2019)

    Google Scholar 

  13. Holla, N., Mishra, P., Yannakoudakis, H., Shutova, E.: Learning to learn to disambiguate: meta-learning for few-shot word sense disambiguation. In: EMNLP (2020)

    Google Scholar 

  14. Du, Y., Holla, N., Zhen, X., Snoek, C.-G., Shutova, E.: Meta-learning with variational semantic memory for word sense disambiguation. In: ACL (2021)

    Google Scholar 

  15. Ibuka, M.: Kindergarten is Too Late!. Souvenir Press, London (1977)

    Google Scholar 

  16. Chen, H., Xia, M., Chen, D.: Non-parametric few-shot learning for word sense disambiguation. In: NAACL (2021)

    Google Scholar 

  17. Yuan, D., Richardson, J., Doherty, R., Evans, C., Altendorf, E.: Semi-supervised word sense disambiguation with neural models. In: COLING (2016)

    Google Scholar 

  18. Raganato, A., Bovi, C.-D., Navigli, R.: Neural sequence learning models for word sense disambiguation. In: EMNLP (2017)

    Google Scholar 

  19. Le, M.-N., Postma, M., Urbani, J., Vossen, P.: A Deep dive into word sense disambiguation with LSTM. In: COLING (2018)

    Google Scholar 

  20. Kågebäck, M., Salomonsson, H.: Word sense disambiguation using a bidirectional LSTM. In: COLING (2016)

    Google Scholar 

  21. Scarlini, B., Pasini, T., Navigli, R.: SensEmBERT: context-enhanced sense embeddings for multilingual word sense disambiguation. In: AAAI (2020)

    Google Scholar 

  22. Hadiwinoto, C., Ng, H.-T., Gan, W.-C.: Improved word sense disambiguation using pre-trained contextualized word representations. In: EMNLP (2019)

    Google Scholar 

  23. Du, J., Qi, F., Sun, M.: Using BERT for word sense disambiguation. arXiv:1909.08358 (2019)

  24. Luo, F., Liu, T., Xia, Q., Chang, B., Sui, Z.: Incorporating glosses into neural word sense disambiguation. In: ACL (2018)

    Google Scholar 

  25. Fernandez, A.-D., Stevenson, M., Martínez-Romo, J., Araujo, L.: Co-occurrence graphs for word sense disambiguation in the biomedical domain. Artif. Intell. Med. 87, 9–19 (2018)

    Article  Google Scholar 

  26. Scarlini, B., Pasini, T., Navigli, R.: With more contexts comes better performance: contextualized sense embeddings for all-round word sense disambiguation. In: EMNLP (2020)

    Google Scholar 

  27. Dongsuk, O., Kwon, S., Kim, K., Ko, Y.: Word sense disambiguation based on word similarity calculation using word vector representation from a knowledge-based graph. In: COLING (2018)

    Google Scholar 

  28. Pasini, T.: The knowledge acquisition bottleneck problem in multilingual word sense disambiguation. In: IJCAI (2020)

    Google Scholar 

  29. Kingma, D.-P., Ba, J.: Adam: A Method for Stochastic Optimization. CoRR, abs/1412.6980 (2015)

    Google Scholar 

  30. Pradhan, S., Loper, E., Dligach, D., Palmer, M.: SemEval-2007 Task 2017: English lexical sample. In: SRL and All Words, Fourth International Workshop on Semantic Evaluations (2007)

    Google Scholar 

  31. Edmonds, P., Cotton, S.: SENSEVAL-2: Overview. *SEMEVAL (2001)

    Google Scholar 

  32. Snyder, B., Palmer, M.: The English all-words task. In: ACL (2004)

    Google Scholar 

  33. Navigli, R., Jurgens, D., Vannella, D.: SemEval-2013 task 12: multilingual word sense disambiguation. In: *SEMEVAL (2013)

    Google Scholar 

  34. Moro, A., Navigli, R.: SemEval-2015 Task 13: multilingual all-words sense disambiguation and entity linking. In: *SEMEVAL (2015)

    Google Scholar 

  35. Fellbaum, C.-D.: WordNet: An Electronic Lexical Database. Language. MIT Press, Cambridge (2000)

    Google Scholar 

  36. Loureiro, D., Jorge, A.-M.: Language modelling makes sense: propagating representations through wordnet for full-coverage word sense disambiguation. In: ACL (2019)

    Google Scholar 

  37. Wang, M., Wang, Y.: A synset relation-enhanced framework with a try-again mechanism for word sense disambiguation. In: EMNLP (2020)

    Google Scholar 

  38. Bevilacqua, M., Navigli, R.: Breaking Through the 80% Glass Ceiling: Raising the State of the Art in Word Sense Disambiguation by Incorporating Knowledge Graph Information. ACL (2020)

    Google Scholar 

  39. Berend, G.: Sparsity Makes Sense: Word Sense Disambiguation Using Sparse Contextualized Word Representations. EMNLP (2020)

    Google Scholar 

  40. Wang, M., Zhang, J., Wang, Y.: Enhancing the Context Representation in Similarity-based Word Sense Disambiguation. EMNLP (2021)

    Google Scholar 

  41. Song, Y., Ong, X.C., Ng, H.T., Lin, Q.: Improved Word Sense Disambiguation with Enhanced Sense Representations. EMNLP (2021)

    Google Scholar 

  42. Conia, S., Navigli, R.: Framing Word Sense Disambiguation as a Multi-Label Problem for Model-Agnostic Knowledge Integration. EACL (2021)

    Google Scholar 

  43. Wang, M., Wang, Y.: Word Sense Disambiguation: Towards Interactive Context Exploitation from Both Word and Sense Perspectives. ACL (2021)

    Google Scholar 

Download references

Acknowledgements

Our work is supported by the National Natural Science Foundation of China (61976154), the National Key R &D Program of China (2019YFC1521200), the State Key Laboratory of Communication Content Cognition, People’s Daily Online (No. A32003), and the National Natural Science Foundation of China (No. 62106176).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ruifang He or Fengyu Guo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, J., He, R., Guo, F. (2023). Bi-matching Mechanism to Combat Long-tail Senses of Word Sense Disambiguation. In: Amini, MR., Canu, S., Fischer, A., Guns, T., Kralj Novak, P., Tsoumakas, G. (eds) Machine Learning and Knowledge Discovery in Databases. ECML PKDD 2022. Lecture Notes in Computer Science(), vol 13714. Springer, Cham. https://doi.org/10.1007/978-3-031-26390-3_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-26390-3_36

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-26389-7

  • Online ISBN: 978-3-031-26390-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics