[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Synchronous Bi-directional Pedestrian Trajectory Prediction with Error Compensation

  • Conference paper
  • First Online:
Computer Vision – ACCV 2022 (ACCV 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13846))

Included in the following conference series:

Abstract

Pedestrian trajectory prediction as an essential part of reasoning human motion behaviors, has been deployed in a number of vision applications, such as autonomous navigation and video surveillance. Most existing methods adopt autoregressive frameworks to forecast the future trajectory, where the trajectory is iteratively generated based on the previous outputs. Such a process will suffer from large accumulated errors over the long-term forecast horizon. To address this issue, in this paper, we propose a Synchronous Bi-Directional framework (SBD) with error compensation for pedestrian trajectory prediction, which can greatly alleviate the error accumulation during prediction. Specifically, we first develop a bi-directional trajectory prediction mechanism, and force the predicting procedures for two opposite directions to be synchronous through a shared motion characteristic. Different from previous works, the mutual constraints inherent to our framework from the synchronous opposite-predictions can significantly prevent the error accumulation. In order to reduce the possible prediction error in each timestep, we further devise an error compensation network to model and compensate for the positional deviation between the ground-truth and the predicted trajectory, thus improving the prediction accuracy of our scheme. Experiments conducted on the Stanford Drone dataset and the ETH-UCY dataset show that our method achieves much better results than existing algorithms. Particularly, by resorting to our alleviation methodology for the error accumulation, our scheme exhibits superior performance in the long-term pedestrian trajectory prediction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 119.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 149.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Liang, J., Jiang, L., Niebles, J.C., Hauptmann, A.G., Fei-Fei, L.: Peeking into the future: predicting future person activities and locations in videos. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5725–5734 (2019)

    Google Scholar 

  2. Luo, Y., Cai, P., Bera, A., Hsu, D., Lee, W.S., Manocha, D.: PORCA: modeling and planning for autonomous driving among many pedestrians. IEEE Robot. Autom. Lett. 3(4), 3418–3425 (2018)

    Article  Google Scholar 

  3. Luber, M., Stork, J.A., Tipaldi, G.D., Arras, K.O.: People tracking with human motion predictions from social forces. In: Proceedings of the IEEE International Conference on Robotics and Automation, pp. 464–469 (2010)

    Google Scholar 

  4. Bastani, V., Marcenaro, L., Regazzoni, C.S.: Online nonparametric bayesian activity mining and analysis from surveillance video. IEEE Trans. Image Process. 25(5), 2089–2102 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  5. Helbing, D., Molnar, P.: Social force model for pedestrian dynamics. Phys. Rev. E 51(5), 4282 (1995)

    Article  Google Scholar 

  6. Tay, M.K.C., Laugier, C.: Modelling smooth paths using gaussian processes. In: Proceedings of the International Conference on Field and Service Robotics, pp. 381–390 (2008)

    Google Scholar 

  7. Treuille, A., Cooper, S., Popović, Z.: Continuum crowds. ACM Trans. Graph. (TOG) 25(3), 1160–1168 (2006)

    Article  Google Scholar 

  8. Pellegrini, S., Ess, A., Schindler, K., Van Gool, L.: You’ll never walk alone: modeling social behavior for multi-target tracking. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 261–268 (2009)

    Google Scholar 

  9. Yuan, Y., Weng, X., Ou, Y., Kitani, K.M.: AgentFormer: agent-aware transformers for socio-temporal multi-agent forecasting. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 9813–9823 (2021)

    Google Scholar 

  10. Yu, C., Ma, X., Ren, J., Zhao, H., Yi, S.: Spatio-temporal graph transformer networks for pedestrian trajectory prediction. In: Proceedings of the European Conference on Computer Vision, pp. 507–523 (2020)

    Google Scholar 

  11. Salzmann, T., Ivanovic, B., Chakravarty, P., Pavone, M.: Trajectron++: dynamically-feasible trajectory forecasting with heterogeneous data. In: Proceedings of the European Conference on Computer Vision, pp. 683–700 (2020)

    Google Scholar 

  12. Yao, Y., Atkins, E., Johnson-Roberson, M., Vasudevan, R., Du, X.: BiTraP: Bi-directional pedestrian trajectory prediction with multi-modal goal estimation. IEEE Robot. Autom. Lett. 6(2), 1463–1470 (2021)

    Article  Google Scholar 

  13. Li, Y., Liang, R., Wei, W., Wang, W., Zhou, J., Li, X.: Temporal pyramid network with spatial-temporal attention for pedestrian trajectory prediction. IEEE Trans. Netw. Sci. Eng. 9, 1006–1019 (2021)

    Google Scholar 

  14. Alahi, A., Goel, K., Ramanathan, V., Robicquet, A., Fei-Fei, L., Savarese, S.: Social LSTM: human trajectory prediction in crowded spaces. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 961–971 (2016)

    Google Scholar 

  15. Gupta, A., Johnson, J., Fei-Fei, L., Savarese, S., Alahi, A.: Social GAN: socially acceptable trajectories with generative adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2255–2264 (2018)

    Google Scholar 

  16. Fragkiadaki, K., Levine, S., Felsen, P., Malik, J.: Recurrent network models for human dynamics. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 4346–4354 (2015)

    Google Scholar 

  17. Zhang, P., Ouyang, W., Zhang, P., Xue, J., Zheng, N.: SR-LSTM: state refinement for LSTM towards pedestrian trajectory prediction. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 12085–12094 (2019)

    Google Scholar 

  18. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:1609.02907 (2016)

  19. Mohamed, A., Qian, K., Elhoseiny, M., Claudel, C.: Social-STGCNN: a social spatio-temporal graph convolutional neural network for human trajectory prediction. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 14424–14432 (2020)

    Google Scholar 

  20. Kosaraju, V., Sadeghian, A., Martín-Martín, R., Reid, I., Rezatofighi, H., Savarese, S.: Social-BiGAT: multimodal trajectory forecasting using bicycle-GAN and graph attention networks. In: Proceedings of the Advances in Neural Information Processing Systems. 32 (2019)

    Google Scholar 

  21. Shi, L., et al.: SGCN: sparse graph convolution network for pedestrian trajectory prediction. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8994–9003 (2021)

    Google Scholar 

  22. Su, Y., et al.: Trajectory forecasting based on prior-aware directed graph convolutional neural network. IEEE Trans. Intell. Transp. Syst. 23, 16773–16785 (2022)

    Article  Google Scholar 

  23. Duan, J., et al.: Complementary attention gated network for pedestrian trajectory prediction (2022)

    Google Scholar 

  24. Sadeghian, A., Kosaraju, V., Sadeghian, A., Hirose, N., Rezatofighi, H., Savarese, S.: SoPhie: an attentive GAN for predicting paths compliant to social and physical constraints. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1349–1358 (2019)

    Google Scholar 

  25. Dendorfer, P., Osep, A., Leal-Taixé, L.: Goal-GAN: multimodal trajectory prediction based on goal position estimation. In: Proceedings of the Asian Conference on Computer Vision (2020)

    Google Scholar 

  26. Mangalam, K., et al.: It is not the journey but the destination: endpoint conditioned trajectory prediction. In: Proceedings of the European Conference on Computer Vision, pp. 759–776 (2020)

    Google Scholar 

  27. Chen, G., Li, J., Zhou, N., Ren, L., Lu, J.: Personalized trajectory prediction via distribution discrimination. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 15580–15589 (2021)

    Google Scholar 

  28. Wang, C., Wang, Y., Xu, M., Crandall, D.: Stepwise goal-driven networks for trajectory prediction. IEEE Robot. Autom. Lett. 7, 2716–2723 (2022)

    Article  Google Scholar 

  29. Shi, L., et al.: Social interpretable tree for pedestrian trajectory prediction (2022)

    Google Scholar 

  30. Vaswani, A., et al.: Attention is all you need. In: Proceedings of the Advances in Neural Information Processing Systems, pp. 5998–6008 (2017)

    Google Scholar 

  31. Kingma, D.P., Welling, M.: Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114 (2013)

  32. Robicquet, A., Sadeghian, A., Alahi, A., Savarese, S.: Learning social etiquette: human trajectory understanding in crowded scenes. In: Proceedings of the European Conference on Computer Vision, pp. 549–565 (2016)

    Google Scholar 

  33. Lerner, A., Chrysanthou, Y., Lischinski, D.: Crowds by example. Comput. Graph. Forum 26, 655–664 (2007)

    Google Scholar 

  34. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  35. Loshchilov, I., Hutter, F.: SGDR: stochastic gradient descent with warm restarts. arXiv preprint arXiv:1608.03983 (2016)

  36. Huang, Y., Bi, H., Li, Z., Mao, T., Wang, Z.: STGAT: modeling spatial-temporal interactions for human trajectory prediction. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 6272–6281 (2019)

    Google Scholar 

  37. Liang, R., Li, Y., Li, X., Tang, Y., Zhou, J., Zou, W.: Temporal pyramid network for pedestrian trajectory prediction with multi-supervision. In: Proceedings of the AAAI Conference on Artificial Intelligence. vol. 35, pp. 2029–2037 (2021)

    Google Scholar 

  38. Wang, Y., Chen, S.: Multi-agent trajectory prediction with spatio-temporal sequence fusion. IEEE Trans. Multimedia 25, 13–23 (2021)

    Google Scholar 

  39. Pang, B., Zhao, T., Xie, X., Wu, Y.N.: Trajectory prediction with latent belief energy-based model. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 11814–11824 (2021)

    Google Scholar 

  40. Sun, J., Li, Y., Fang, H.S., Lu, C.: Three steps to multimodal trajectory prediction: Modality clustering, classification and synthesis. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 13250–13259 (2021)

    Google Scholar 

  41. Mangalam, K., An, Y., Girase, H., Malik, J.: From goals, waypoints & paths to long term human trajectory forecasting. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 15233–15242 (2021)

    Google Scholar 

  42. Gu, T., et al.: Stochastic trajectory prediction via motion indeterminacy diffusion. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 17113–17122 (2022)

    Google Scholar 

Download references

Acknowledgements

This work was supported in part by the Natural Science Foundation of China under Grant 62001304, Grant 61871273, Grant 61901237 and Grant 62171244; in part by the Foundation for Science and Technology Innovation of Shenzhen under Grant RCBS20210609103708014, the Guangdong Basic and Applied Basic Research Foundation under Grant 2022A1515010645 and the Shenzhen College Stability Support Plan (Key Project).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuanman Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Xie, C., Li, Y., Liang, R., Dong, L., Li, X. (2023). Synchronous Bi-directional Pedestrian Trajectory Prediction with Error Compensation. In: Wang, L., Gall, J., Chin, TJ., Sato, I., Chellappa, R. (eds) Computer Vision – ACCV 2022. ACCV 2022. Lecture Notes in Computer Science, vol 13846. Springer, Cham. https://doi.org/10.1007/978-3-031-26351-4_42

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-26351-4_42

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-26350-7

  • Online ISBN: 978-3-031-26351-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics