[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Competitive Influence Maximisation with Nonlinear Cost of Allocations

  • Conference paper
  • First Online:
Computational Data and Social Networks (CSoNet 2022)

Abstract

We explore the competitive influence maximisation problem in the voter model. We extend past work by modelling real-world settings where the strength of influence changes nonlinearly with external allocations to the network. We use this approach to identify two distinct regimes—one where optimal intervention strategies offer significant gain in outcomes, and the other where they yield no gains. The two regimes also vary in their sensitivity to budget availability, and we find that in some cases, even a tenfold increase in the budget only marginally improves the outcome of an intervention in a population.

This research was sponsored by the U.S. Army Research Laboratory and the U.K. Ministry of Defence under Agreement Number W911NF-16-3-0001. The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the official policies, either expressed or implied, of the U.S. Army Research Laboratory, the U.S. Government, the U.K. Ministry of Defence or the U.K. Government. The U.S. and U.K. Governments are authorized to reproduce and distribute reprints for Government purposes notwithstanding any copyright notation hereon. The authors would like to thank Dr. Markus Brede for the insightful discussions. The authors acknowledge the use of the IRIDIS High Performance Computing Facility at the University of Southampton for the completion of this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 43.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 54.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    For a comprehensive review see [2].

  2. 2.

    The total vote-share is a function of the network structure L, competitor allocations \(p_{B}\) and controller allocations \(p_{A}\). The maximum vote-share \(X_{A}^*\) is achieved by the optimal allocation vector \(p_{A}^*\).

  3. 3.

    Given by \(\nabla _{p_{A}} X_{A} = \frac{1}{N} \boldsymbol{1}^{T} [L+diag(p_{A}+p_{B})] ^{-1} (I - diag(x_{A})).\)

  4. 4.

    When \(X_{A}(t+1) < X_{A}(t)\), the solution \(p_{A}(t+1)\) at time step \((t+1)\) is rejected and the allocation vector is optimised again with an updated step-length \(\eta (t+1) = \frac{\eta (t)}{2}\).

  5. 5.

    See https://github.com/Optimizater/Lp-ball-Projection for more details.

  6. 6.

    The majorisation step relaxes and linearises the \(\ell _{p}\) ball to obtain a weighted \(\ell _{1}\) ball, and the minimisation step obtains the projection of the point on the \(\ell _{1}\) ball.

References

  1. Barbero, A., Sra, S.: Modular proximal optimization for multidimensional total-variation regularization. arXiv preprint arXiv:1411.0589 (2014)

  2. Castellano, C., Fortunato, S., Loreto, V.: Statistical physics of social dynamics. Rev. Mod. Phys. 81(2), 591 (2009)

    Article  Google Scholar 

  3. Castellano, C., Muñoz, M.A., Pastor-Satorras, R.: Nonlinear q-voter model. Phys. Rev. E 80(4), 041129 (2009)

    Article  Google Scholar 

  4. Chakraborty, S., Stein, S., Brede, M., Swami, A., de Mel, G., Restocchi, V.: Competitive influence maximisation using voting dynamics. In: Proceedings of the 2019 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, pp. 978–985 (2019)

    Google Scholar 

  5. Clifford, P., Sudbury, A.: A model for spatial conflict. Biometrika 60(3), 581–588 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  6. Darko, A., Chan, A.P.: Review of barriers to green building adoption. Sustain. Dev. 25(3), 167–179 (2017)

    Article  Google Scholar 

  7. Goldstein, D.G., McAfee, R.P., Suri, S.: The effects of exposure time on memory of display advertisements. In: Proceedings of the 12th ACM Conference on Electronic Commerce, pp. 49–58. ACM (2011)

    Google Scholar 

  8. Guimera, R., Danon, L., Diaz-Guilera, A., Giralt, F., Arenas, A.: Self-similar community structure in a network of human interactions. Phys. Rev. E 68(6), 065103 (2003)

    Article  Google Scholar 

  9. Holley, R.A., Liggett, T.M.: Ergodic theorems for weakly interacting infinite systems and the voter model. Ann. Probab. 3(4), 643–663 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  10. Jain, P., Kar, P., et al.: Non-convex optimization for machine learning. Found. Trends Mach. Learn. 10(3–4), 142–363 (2017)

    Article  MATH  Google Scholar 

  11. Kempe, D., Kleinberg, J., Tardos, É.: Maximizing the spread of influence through a social network. In: Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 137–146 (2003)

    Google Scholar 

  12. Masuda, N.: Opinion control in complex networks. New J. Phys. 17(3), 033031 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  13. Moon, S.: Analysis of Twitter unfollow: how often do people unfollow in Twitter and why? In: Datta, A., Shulman, S., Zheng, B., Lin, S.-D., Sun, A., Lim, E.-P. (eds.) SocInfo 2011. LNCS, vol. 6984, pp. 7–7. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-24704-0_6

    Chapter  Google Scholar 

  14. Newman, M.: Networks. Oxford University Press, Oxford (2018)

    Book  MATH  Google Scholar 

  15. Pastor-Satorras, R., Vespignani, A.: Epidemic spreading in scale-free networks. Phys. Rev. Lett. 86(14), 3200 (2001)

    Article  Google Scholar 

  16. Redner, S.: Reality-inspired voter models: a mini-review. C R Phys. 20(4), 275–292 (2019)

    Article  MathSciNet  Google Scholar 

  17. Rogers, E.M.: Diffusion of Innovations. Simon and Schuster, New York (2010)

    Google Scholar 

  18. Romero Moreno, G., Chakraborty, S., Brede, M.: Shadowing and shielding: effective heuristics for continuous influence maximisation in the voting dynamics. PLoS ONE 16(6), e0252515 (2021)

    Article  Google Scholar 

  19. Rossi, R.A., Ahmed, N.K.: The network data repository with interactive graph analytics and visualization. In: AAAI (2015). http://networkrepository.com

  20. Tanabe, S., Masuda, N.: Complex dynamics of a nonlinear voter model with contrarian agents. Chaos Interdisc. J. Nonlinear Sci. 23(4), 043136 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  21. Tanaka, T., Aoyagi, T.: Optimal weighted networks of phase oscillators for synchronization. Phys. Rev. E 78(4), 046210 (2008)

    Article  MathSciNet  Google Scholar 

  22. Yang, X., Wang, J., Wang, H.: Towards an efficient approach for the nonconvex \(\ell _p\) ball projection: algorithm and analysis. arXiv preprint arXiv:2101.01350 (2021)

  23. Yildiz, E., Ozdaglar, A., Acemoglu, D., Saberi, A., Scaglione, A.: Binary opinion dynamics with stubborn agents. ACM Trans. Econ. Comput. (TEAC) 1(4), 1–30 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sukankana Chakraborty .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chakraborty, S., Stein, S. (2023). Competitive Influence Maximisation with Nonlinear Cost of Allocations. In: Dinh, T.N., Li, M. (eds) Computational Data and Social Networks . CSoNet 2022. Lecture Notes in Computer Science, vol 13831. Springer, Cham. https://doi.org/10.1007/978-3-031-26303-3_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-26303-3_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-26302-6

  • Online ISBN: 978-3-031-26303-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics