[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Data Integration in Practice: Academic Finance Analytics Case Study

  • Conference paper
  • First Online:
Advances in Internet, Data & Web Technologies (EIDWT 2023)

Abstract

Financial sustainability is one of the crucial operations of many higher education institutes. Though since late 2019, the inevitable disruption and significant changes in the higher education system have continued after the increasing in COVID-19 transmissions. These affect the operations of higher education institutions in numerous ways, such as students’ admission, financial management and teaching strategies. The purpose of this study is to present a data integration aspect of the analysis of financial data from academic income. Such data integration relates to the data from enrollment, admission, and research from many heterogeneous sources within the institution. In addition, the k-mean clustering approach is applied to group academic programs for further analysis. In the future, the institution’s financial and risk management, research enhancement, and reputation and positioning will employ this analytics to support and shape the institution’s operations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 199.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 249.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Halevy, A.: Answering queries using views: A survey (2001). https://doi.org/10.1007/s007780100054

  2. Ziegler, P., Dittrich, K.R.: Three decades of data intecration— all problems solved? In: Jacquart, R. (ed.) Building the Information Society. IIFIP, vol. 156, pp. 3–12. Springer, Boston, MA (2004). https://doi.org/10.1007/978-1-4020-8157-6_1

    Chapter  Google Scholar 

  3. Eduardo, S., Nazabal, A., Williams, C.K.I.: Robust variational autoencoders for outlier detection and repair of mixed-type data. In: International Conference on Artificial Intelligence and Statistics, pp. 4056-4066. PMLR (2020)

    Google Scholar 

  4. Aggarwal, C.C., Reddy, C.K.: Data Clustering: Algorithms and Applications, 1st edn. Chapman & Hall/CRC (2013)

    Google Scholar 

  5. Angée, S., Lozano-Argel, S.I., Montoya-Munera, E.N., Ospina-Arango, J.D., Tabares-Betancur, M.S.: Towards an improved asum-dm process methodology for cross-disciplinary multi-organization big data & analytics projects. In: Uden, L., Hadzima, B., Ting, I.H. (eds.) Knowledge Management in Organizations, pp. 613–624. Springer International Publishing, Cham (2018)

    Chapter  Google Scholar 

  6. Batini, C., Lenzerini, M., Navathe, S.B.: A comparative analysis of methodologies for database schema integration. ACM Comput. Surv. 18(4), 323–364 (1986)

    Google Scholar 

  7. Chen, S.-P., Chang, C.-W.: Measuring the efficiency of university departments: an empirical study using data envelopment analysis and cluster analysis. Scientometrics 126(6), 5263–5284 (2021). https://doi.org/10.1007/s11192-021-03982-3

    Article  Google Scholar 

  8. Dayal, U., Castellanos, M., Simitsis, A., Wilkinson, K.: Data integration flows for business intelligence. In: Association for Computing Machinery, pp. 1–11 (2009). https://doi.org/10.1145/1516360.1516362

  9. Deloitte Touche Tohmatsu Limited (2020) Covid-19 impact on higher education. https://www2.deloitte.com/us/en/pages/public-sector/articles/covid-19-impact-on-higher-education.html Accessed 11 August 2022

  10. Dong, X.L., Rekatsinas, T.: Data integration and machine learning: A natural synergy. Proc VLDB Endow 11(12), 2094–2097 (2018).https://doi.org/10.14778/3229863.3229876

  11. Elbawab, R.: University rankings and goals: A cluster analysis. Economies 10(9), 209 (2022) https://doi.org/10.3390/economies10090209, https://www.mdpi.com/2227-7099/10/9/209

  12. Guzman, J.H.E., Zuluaga-Ortiz, R.A., Donado, L.E.G., Delahoz-Dominguez, E.J., Marquez-Castillo, A., Suarez-Sánchez, M.: Cluster analysis in higher education institutions’ knowledge identification and production processes. Procedia Computer Science 203:570–574 (2022). https://doi.org/10.1016/j.procs.2022.07.081, https://www.sciencedirect.com/science/article/pii/S187705092200686X In: 17th International Conference on Future Networks and Communications/19th International Conference on Mobile Systems and Pervasive Computing/12th International Conference on Sustainable Energy Information Technology (FNC/MobiSPC/SEIT 2022), August 9-11, 2022, Niagara Falls, Ontario, Canada

  13. Han, J., Kamber, M., Pei, J.: Data Mining Concepts and Techniques, third edition (2012). www.amazon.de/Data-Mining-Concepts-Techniques-Management/dp/0123814790/ref=tmm_hrd_title_0?ie=UTF8 &qid=1366039033 &sr=1-1

  14. IBM Corporation: Ibm spss modeler crisp-dm guide (2021). https://www.ibm.com/docs/en/spss-modeler/18.1.1?topic=spss-modeler-crisp-dm-guide Accessed 11 August 2022

  15. Jain, A.K., Murty, M.N., Flynn, P.J.: Data clustering: A review 31(3), 264–323 (2000)

    Google Scholar 

  16. Kilkenny, M.F., Robinson, K.M.: Data quality: “garbage in -garbage out’’. Health Information Management Journal 47(3), 103–105 (2018). https://doi.org/10.1177/1833358318774357

    Article  Google Scholar 

  17. Lenzerini, M.: Data integration: A theoretical perspective. Association for Computing Machinery, New York, NY, USA, PODS ’02, pp. 233–246 (2002). https://doi.org/10.1145/543613.543644

  18. Li, Y., Wu, F.X., Ngom, A.: A review on machine learning principles for multi-view biological data integration. (2018). https://doi.org/10.1093/bib/bbw113

    Article  Google Scholar 

  19. Parent, C., Spaccapietra, S.: Issues and approaches of database integration. Commun. ACM 41, 166–178 (1998). https://doi.org/10.1145/276404.276408

    Article  Google Scholar 

  20. Parent, C., Spaccapietra, S.: Database integration: The key to data interoperability. In: Advances in Object-Oriented Data Modeling, The MIT Press (2000)

    Google Scholar 

  21. Pavlov, O.V., Katsamakas, E.: Covid-19 and financial sustainability of academic institutions. Sustainability (Switzerland) 13(7), 3903 (2021). https://doi.org/10.3390/su13073903

  22. Poess, M., Rabl, T., Jacobsen, H.A., Caufield, B.: Tpc-di: The first industry benchmark for data integration. Proc. VLDB Endow 7(13), 1367–1378 (2014). https://doi.org/10.14778/2733004.2733009

  23. Rekatsinas, T., Chu, X., Ilyas, I.F., Ré, C.: Holoclean: Holistic data repairs with probabilistic inference. Proc VLDB Endow 10(11), 1190–1201 (2017). https://doi.org/10.14778/3137628.3137631

  24. Roh, Y., Heo, G., Whang, S.E.: A survey on data collection for machine learning: a big data-ai integration perspective. Trans. Knowl. Data Mach. Learn. 33(4), 1328–1347 (2021). https://doi.org/10.1109/TKDE.2019.2946162

    Article  Google Scholar 

  25. Rowley, W.J.: Higher education in the midst of a pandemic: a dean’s perspective. Int. Dialogues Educ. 7, 108–115 (2020)

    Google Scholar 

  26. Sujansky, W.: Heterogeneous database integration in biomedicine. J. Biomed. Inform. 34, 285–298 (2001). https://doi.org/10.1006/jbin.2001.1024, http://www.sciencedirect.com/science/article/pii/S153204640191024X

  27. Witze, A.: Universities will never be the same after the coronavirus crisis (2020). www.nature.com/articles/d41586-020-01518-y Accessed 11 August 2022

Download references

Acknowledgements

We are most thankful for the Faculty of Engineering, Finance Division of University, Planning Division of Office Of the University, Registration Office Chiang Mai University, Graduate School Chiang Mai University, Office of Educational Quality Development, for supporting us in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kittayaporn Chantaranimi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chantaranimi, K., Natwichai, J., Pajsaranuwat, P., Wisetborisut, A., Phosu, S. (2023). Data Integration in Practice: Academic Finance Analytics Case Study. In: Barolli, L. (eds) Advances in Internet, Data & Web Technologies. EIDWT 2023. Lecture Notes on Data Engineering and Communications Technologies, vol 161. Springer, Cham. https://doi.org/10.1007/978-3-031-26281-4_1

Download citation

Publish with us

Policies and ethics