Abstract
Detecting defects in printed labels is essential to ensure product quality. Reference-based comparison is a potential method to challenge this task, which is widely used for defect detection. However, this method gets poor performance under large deformation, due to the lack of ability of registering the testing image with the reference image. Therefore, accurate image registration is an urgent case for defect detection of printed labels. In this paper, a patch-based multi-scale pyramid registration network (PPR-Net) is proposed. First, an image patch splitting and stitching strategy is proposed, which is scalable in image resolution. Second, a multi-scale pyramid registration module is designed to fuse multiple convolutional features to enhance the registration capability for large deformation, which gradually refines multi-scale deformation fields in a coarse-to-fine manner. Third, a distortion loss function is introduced to improve text distortions of registered images. Finally, a synthetic database is generated based on real printed labels, to simulate defective printed labels with large deformation for performance comparison. Extensive experimental results show that our method dramatically outperforms other comparable approaches.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Alcantarilla, P.F., Solutions, T.: Fast explicit diffusion for accelerated features in nonlinear scale spaces. IEEE Trans. Patt. Anal. Mach. Intell. 34(7), 1281–1298 (2011)
Balakrishnan, G., Zhao, A., Sabuncu, M.R., Guttag, J., Dalca, A.V.: An unsupervised learning model for deformable medical image registration. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 9252–9260 (2018)
Bay, H., Tuytelaars, T., Van Gool, L.: SURF: speeded up robust features. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3951, pp. 404–417. Springer, Heidelberg (2006). https://doi.org/10.1007/11744023_32
Chollet, F., et al.: Keras (2015). https://github.com/keras-team/keras
Hu, X., Kang, M., Huang, W., Scott, M.R., Wiest, R., Reyes, M.: Dual-stream pyramid registration network. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11765, pp. 382–390. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32245-8_43
Jaderberg, M., Simonyan, K., Zisserman, A., et al.: Spatial transformer networks. Adv. Neural. Inf. Process. Syst. 28, 2017–2025 (2015)
Ke, Y., Sukthankar, R.: PCA-SIFT: a more distinctive representation for local image descriptors. In: Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2004, vol. 2, pp. II-II. IEEE (2004)
Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)
Krebs, J., et al.: Robust non-rigid registration through agent-based action learning. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10433, pp. 344–352. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66182-7_40
Li, D., Li, J., Fan, Y., Lu, G., Ge, J., Liu, X.: Printed label defect detection using twice gradient matching based on improved cosine similarity measure. Expert Syst. Appl. 204, 117372 (2022)
Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vision 60(2), 91–110 (2004)
Ma, K., Shu, Z., Bai, X., Wang, J., Samaras, D.: Docunet: document image unwarping via a stacked U-Net. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4700–4709 (2018)
Nazib, A., Fookes, C., Perrin, D.: Dense deformation network for high resolution tissue cleared image registration. arXiv preprint arXiv:1906.06180 (2019)
Peng, X., Chen, Y., Xie, J., Liu, H., Gu, C.: An intelligent online presswork defect detection method and system. In: 2010 Second International Conference on Information Technology and Computer Science, pp. 158–161. IEEE (2010)
Rohé, M.-M., Datar, M., Heimann, T., Sermesant, M., Pennec, X.: SVF-Net: learning deformable image registration using shape matching. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10433, pp. 266–274. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66182-7_31
Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28
Sokooti, H., de Vos, B., Berendsen, F., Lelieveldt, B.P.F., Išgum, I., Staring, M.: Nonrigid image registration using multi-scale 3D convolutional neural networks. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10433, pp. 232–239. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66182-7_27
Yang, X., Kwitt, R., Styner, M., Niethammer, M.: Quicksilver: fast predictive image registration-a deep learning approach. Neuroimage 158, 378–396 (2017)
Yoo, J.C., Han, T.H.: Fast normalized cross-correlation. Circ. Syst. Sig. Process. 28(6), 819–843 (2009)
Zhang, E., Chen, Y., Gao, M., Duan, J., Jing, C.: Automatic defect detection for web offset printing based on machine vision. Appl. Sci. 9(17), 3598 (2019)
Zhou, Y., et al.: Unsupervised deformable medical image registration via pyramidal residual deformation fields estimation. arXiv preprint arXiv:2004.07624 (2020)
Acknowledgements
This work was supported in part by NSFC fund (62176077, 62272133, 61906162), in part by the Shenzhen Colleges and Universities Stable Support Program No. GXWD20220811170100001, in part by the Guangdong Basic and Applied Basic Research Foundation under Grant 2019B1515120055, in part by the Shenzhen Key Technical Project under Grant 2020N046, in part by the Shenzhen Fundamental Research Fund under Grant JCYJ20210324132210025, in part by Shenzhen Science and Technology Program (RCBS20200714114910193).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Li, D., Li, Y., Li, J., Lu, G. (2023). PPR-Net: Patch-Based Multi-scale Pyramid Registration Network for Defect Detection of Printed Label. In: Wang, L., Gall, J., Chin, TJ., Sato, I., Chellappa, R. (eds) Computer Vision – ACCV 2022. ACCV 2022. Lecture Notes in Computer Science, vol 13842. Springer, Cham. https://doi.org/10.1007/978-3-031-26284-5_19
Download citation
DOI: https://doi.org/10.1007/978-3-031-26284-5_19
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-26283-8
Online ISBN: 978-3-031-26284-5
eBook Packages: Computer ScienceComputer Science (R0)