[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

PPR-Net: Patch-Based Multi-scale Pyramid Registration Network for Defect Detection of Printed Label

  • Conference paper
  • First Online:
Computer Vision – ACCV 2022 (ACCV 2022)

Abstract

Detecting defects in printed labels is essential to ensure product quality. Reference-based comparison is a potential method to challenge this task, which is widely used for defect detection. However, this method gets poor performance under large deformation, due to the lack of ability of registering the testing image with the reference image. Therefore, accurate image registration is an urgent case for defect detection of printed labels. In this paper, a patch-based multi-scale pyramid registration network (PPR-Net) is proposed. First, an image patch splitting and stitching strategy is proposed, which is scalable in image resolution. Second, a multi-scale pyramid registration module is designed to fuse multiple convolutional features to enhance the registration capability for large deformation, which gradually refines multi-scale deformation fields in a coarse-to-fine manner. Third, a distortion loss function is introduced to improve text distortions of registered images. Finally, a synthetic database is generated based on real printed labels, to simulate defective printed labels with large deformation for performance comparison. Extensive experimental results show that our method dramatically outperforms other comparable approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 71.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 89.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Alcantarilla, P.F., Solutions, T.: Fast explicit diffusion for accelerated features in nonlinear scale spaces. IEEE Trans. Patt. Anal. Mach. Intell. 34(7), 1281–1298 (2011)

    Google Scholar 

  2. Balakrishnan, G., Zhao, A., Sabuncu, M.R., Guttag, J., Dalca, A.V.: An unsupervised learning model for deformable medical image registration. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 9252–9260 (2018)

    Google Scholar 

  3. Bay, H., Tuytelaars, T., Van Gool, L.: SURF: speeded up robust features. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3951, pp. 404–417. Springer, Heidelberg (2006). https://doi.org/10.1007/11744023_32

    Chapter  Google Scholar 

  4. Chollet, F., et al.: Keras (2015). https://github.com/keras-team/keras

  5. Hu, X., Kang, M., Huang, W., Scott, M.R., Wiest, R., Reyes, M.: Dual-stream pyramid registration network. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11765, pp. 382–390. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32245-8_43

    Chapter  Google Scholar 

  6. Jaderberg, M., Simonyan, K., Zisserman, A., et al.: Spatial transformer networks. Adv. Neural. Inf. Process. Syst. 28, 2017–2025 (2015)

    Google Scholar 

  7. Ke, Y., Sukthankar, R.: PCA-SIFT: a more distinctive representation for local image descriptors. In: Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2004, vol. 2, pp. II-II. IEEE (2004)

    Google Scholar 

  8. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  9. Krebs, J., et al.: Robust non-rigid registration through agent-based action learning. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10433, pp. 344–352. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66182-7_40

    Chapter  Google Scholar 

  10. Li, D., Li, J., Fan, Y., Lu, G., Ge, J., Liu, X.: Printed label defect detection using twice gradient matching based on improved cosine similarity measure. Expert Syst. Appl. 204, 117372 (2022)

    Article  Google Scholar 

  11. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vision 60(2), 91–110 (2004)

    Article  Google Scholar 

  12. Ma, K., Shu, Z., Bai, X., Wang, J., Samaras, D.: Docunet: document image unwarping via a stacked U-Net. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4700–4709 (2018)

    Google Scholar 

  13. Nazib, A., Fookes, C., Perrin, D.: Dense deformation network for high resolution tissue cleared image registration. arXiv preprint arXiv:1906.06180 (2019)

  14. Peng, X., Chen, Y., Xie, J., Liu, H., Gu, C.: An intelligent online presswork defect detection method and system. In: 2010 Second International Conference on Information Technology and Computer Science, pp. 158–161. IEEE (2010)

    Google Scholar 

  15. Rohé, M.-M., Datar, M., Heimann, T., Sermesant, M., Pennec, X.: SVF-Net: learning deformable image registration using shape matching. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10433, pp. 266–274. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66182-7_31

    Chapter  Google Scholar 

  16. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  17. Sokooti, H., de Vos, B., Berendsen, F., Lelieveldt, B.P.F., Išgum, I., Staring, M.: Nonrigid image registration using multi-scale 3D convolutional neural networks. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10433, pp. 232–239. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66182-7_27

    Chapter  Google Scholar 

  18. Yang, X., Kwitt, R., Styner, M., Niethammer, M.: Quicksilver: fast predictive image registration-a deep learning approach. Neuroimage 158, 378–396 (2017)

    Article  Google Scholar 

  19. Yoo, J.C., Han, T.H.: Fast normalized cross-correlation. Circ. Syst. Sig. Process. 28(6), 819–843 (2009)

    Article  MATH  Google Scholar 

  20. Zhang, E., Chen, Y., Gao, M., Duan, J., Jing, C.: Automatic defect detection for web offset printing based on machine vision. Appl. Sci. 9(17), 3598 (2019)

    Article  Google Scholar 

  21. Zhou, Y., et al.: Unsupervised deformable medical image registration via pyramidal residual deformation fields estimation. arXiv preprint arXiv:2004.07624 (2020)

Download references

Acknowledgements

This work was supported in part by NSFC fund (62176077, 62272133, 61906162), in part by the Shenzhen Colleges and Universities Stable Support Program No. GXWD20220811170100001, in part by the Guangdong Basic and Applied Basic Research Foundation under Grant 2019B1515120055, in part by the Shenzhen Key Technical Project under Grant 2020N046, in part by the Shenzhen Fundamental Research Fund under Grant JCYJ20210324132210025, in part by Shenzhen Science and Technology Program (RCBS20200714114910193).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guangming Lu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, D., Li, Y., Li, J., Lu, G. (2023). PPR-Net: Patch-Based Multi-scale Pyramid Registration Network for Defect Detection of Printed Label. In: Wang, L., Gall, J., Chin, TJ., Sato, I., Chellappa, R. (eds) Computer Vision – ACCV 2022. ACCV 2022. Lecture Notes in Computer Science, vol 13842. Springer, Cham. https://doi.org/10.1007/978-3-031-26284-5_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-26284-5_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-26283-8

  • Online ISBN: 978-3-031-26284-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics