[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Ranging of Confocal Endoscopy Probe Using Recognition and Optical Flow Algorithm

  • Conference paper
  • First Online:
Green, Pervasive, and Cloud Computing (GPC 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13744))

Included in the following conference series:

  • 340 Accesses

Abstract

Early diagnosis is of great significance for the treatment of GI diseases. Endoscopic tissue biopsy of the GI tract is the standard means to diagnose whether the tumor will become cancerous or to confirm the stage of lesions. Confocal endoscopy, which can provide cell-level resolution and realize non-invasive real-time optical biopsy, has attracted much attention in the field of clinical disease diagnosis. However, because of the small field of vision, it is difficult to locate the probe again, which affects the efficiency and learning cost of confocal endoscopy. Based on the honeycomb shape of the original image of the confocal endoscope, the scale of the image pixel corresponding to the real world is obtained through the parameters of the endoscopy probe and the fiber bundle that make up the probe. Yolov3 is used as a crypt recognition algorithm, which assists the optical flow algorithm to predict the pixel displacement of crypt. Finally, the distance and angle of the endoscope lens motion are obtained through the scale. The moving angle and distance of the endoscope can help locate the probe position of the endoscope lens and record the probe path of the endoscope lens. After the exploration is completed, the original exploration path can also be restored by distance and angle information, which helps to accurately locate the lesion again. The Yolov3 Recognition Network was trained with 200 confocal endoscope images of rat colon. The \(\rm{map}_{0.5}\) was 99.84%. Compared with many other optical flow methods, the DISflow optical flow algorithm is finally selected. After testing, the angle error of the algorithm is less than 4°, the distance error is less than 8%. This work can restore the exploration path of confocal endoscopy and improve the diagnostic efficiency of confocal endoscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 43.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 54.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. 王家福, 杨敏, 杨莉, 张云, 袁菁, 刘谦, 侯晓华, 付玲. 用于细胞成像的共聚焦内窥镜. Engineering 1(03), 152–171 (2015)

    Google Scholar 

  2. Brox, T., Bruhn, A., Papenberg, N., Weickert, J.: High accuracy optical flow estimation based on a theory for warping. In: Pajdla, T., Matas, J. (eds.) ECCV 2004. LNCS, vol. 3024, pp. 25–36. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24673-2_3

    Chapter  Google Scholar 

  3. Horn, B.K., Schunck, B.G.: Determining optical flow. Artif. Intell. 17(1–3), 185–203 (1981)

    Google Scholar 

  4. Dosovitskiy, A., et al.: FlowNet: learning optical flow with convolutional networks. In: 2015 IEEE International Conference on Computer Vision (ICCV), pp. 2758-2766 (2015). https://doi.org/10.1109/ICCV.2015.316

  5. Ilg, E., Mayer, N., Saikia, T., Keuper, M., Dosovitskiy, A., Brox, T.: Flownet 2.0: evolution of optical flow estimation with deep networks. In: CVPR (2017)

    Google Scholar 

  6. Sun, D., Yang, X., Liu, M.Y., Kautz, J.: PWC-Net: CNNs for optical flow using pyramid, warping, and cost volume. In: CVPR (2018)

    Google Scholar 

  7. Teed, Z., Deng, J.: RAFT: recurrent all-pairs field transforms for optical flow. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12347, pp. 402–419. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58536-5_24

    Chapter  Google Scholar 

  8. Mayer, N., et al.: A large dataset to train convolutional networks for disparity, optical flow, and scene flow estimation. In: CVPR (2016)

    Google Scholar 

  9. Butler, D.J., Wulff, J., Stanley, G.B., Black, M.J.: A naturalistic open source movie for optical flow evaluation. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7577, pp. 611–625. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33783-3_44

  10. Jonschkowski, R., Stone, A., Barron, J.T., Gordon, A., Konolige, K., Angelova, A.: What matters in unsupervised optical flow. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.M. (eds.) ECCV 2020. LNCS, vol. 12347, pp. 557–572. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58536-5_33

  11. Meister, S., Hur, J., Roth, S.: UnFlow: unsupervised learning of optical flow with a bidirectional census loss. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 32, no. 1 (2018). https://doi.org/10.1609/aaai.v32i1.12276

  12. Luo, K., Wang, C., Liu, S., Fan, H., Wang, J., Sun, J.: UPFlow: upsampling pyramid for unsupervised optical flow learning In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1045 1054 (2021). https://doi.org/10.1109/CVPR46437.2021.00110

  13. Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: unifified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 779–788 (2016)

    Google Scholar 

  14. Redmon, J., Farhadi, A.: YOLO9000: better, faster, stronger. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 7263–7271 (2017)

    Google Scholar 

  15. Redmon, J., Farhadi, A.: YOLOv3: An incremental improvement. arXiv preprint arXiv:1804.02767 (2018)

  16. Liu, W., et al.: SSD: single shot multibox detector. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 21–37. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46448-0_2

    Chapter  Google Scholar 

  17. Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollár, P.: Focal loss for dense object detection. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV), pp. 2980–2988 (2017)

    Google Scholar 

  18. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)

  19. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016)

    Google Scholar 

  20. Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4700–4708 (2017)

    Google Scholar 

  21. Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate object detection and semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 580–587 (2014)

    Google Scholar 

  22. Kroeger, T., Timofte, R., Dai, D., Van Gool, L.: Fast optical flow using dense inverse search. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9908, pp. 471–488. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46493-0_29

    Chapter  Google Scholar 

  23. 李华. 大视场共聚焦内窥成像方法研究. 华中科技大学 (2021)

    Google Scholar 

  24. 王家福. 近红外共聚焦内窥成像方法研究. 华中科技大学 (2018)

    Google Scholar 

  25. Clevers, H.: The intestinal crypt, a prototype stem cell compartment. Cell 154(2), 274–284 (2013). https://doi.org/10.1016/j.cell.2013.07.004. PMID: 23870119

    Article  Google Scholar 

  26. Weinzaepfel, P., Revaud, J., Harchaoui, Z., Schmid, C.: DeepFlow: large displacement optical flow with deep matching. In: 2013 IEEE International Conference on Computer Vision, pp. 1385–1392 (2013). https://doi.org/10.1109/ICCV.2013.175

  27. Farnebäck, G.: Two-Frame motion estimation based on polynomial expansion. In: Bigun, J., Gustavsson, T., (eds) Image Analysis. SCIA 2003. Lecture Notes in Computer Science, vol 2749 (2003). Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45103-X_50

  28. Wulff, J., Black, M.J.: Efficient sparse-to-dense optical flow estimation using a learned basis and layers. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 120-130 (2015). https://doi.org/10.1109/CVPR.2015.7298607

  29. OpenCV: Optical Flow Algorithms

    Google Scholar 

Download references

Acknowledgments

Funding. Hainan Province Key Science and Technology Project (ZDKJ202006). (Supported by Major Special Science and Technology Project of Hainan Province, ZDKJ202006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qian Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yu, H., Lu, Y., Liu, Q. (2023). Ranging of Confocal Endoscopy Probe Using Recognition and Optical Flow Algorithm. In: Yu, C., Zhou, J., Song, X., Lu, Z. (eds) Green, Pervasive, and Cloud Computing. GPC 2022. Lecture Notes in Computer Science, vol 13744. Springer, Cham. https://doi.org/10.1007/978-3-031-26118-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-26118-3_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-26117-6

  • Online ISBN: 978-3-031-26118-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics