Abstract
A feasibility study on micromanipulation performed by a novel, multi-hinge microgripper with high mechanical dexterity and complex in-plane motion is herein presented. Thanks to design concepts based on selective flexibility, the device is highly compact and easy to be manufactured by means of MEMS technologies. In the presented experimental test case, the microgripper was immersed in a complex mixture, made of saline solution with floating agarose-based microbeads as target objects; direct contact tests were carried out via microscope observation of the jaw-tips operational window. The results highlight the function capability of clamping objects of tens of microns in size, encouraging further developments toward the manipulation of actual cells.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Wang, W., Zhao, Y., Lin, Q.: An integrated MEMS tactile tri-axial micro-force probe sensor for Minimally Invasive Surgery. In: IEEE 3rd International Conference on Nano/Molecular Medicine and Engineering, pp. 71–76. IEEE (2009)
Buzzin, A., et al.: Integrated 3D microfluidic device for impedance spectroscopy in lab-on-chip systems. In: 2019 IEEE 8th International Workshop on Advances in Sensors and Interfaces (IWASI), pp. 224–227. IEEE (2019)
Buzzin, A., Asquini, R., Caputo, D., de Cesare, G.: On-glass integrated SU-8 waveguide and amorphous silicon photosensor for on-chip detection of biomolecules: feasibility study on hemoglobin sensing. Sensors 21(2), 415 (2021)
Bashir, R.: BioMEMS: state-of-the-art in detection, opportunities and prospects. Adv. Drug Deliv. Rev. 56(11), 1565–1586 (2004)
Buzzin, A., Veroli, A., de Cesare, G., Belfiore, N.P.: NEMS-technology based nano gripper for mechanic manipulation in space exploration mission. Adv. Astro. Sci. 163, 61–67 (2018)
Wiklund, M., et al.: Ultrasound-induced cell–cell interaction studies in a multi-well microplate. Micromachines 5(1), 27–49 (2014)
Norregaard, K., Jauffred, L., Berg-Sørensen, K., Oddershede, L.B.: Optical manipulation of single molecules in the living cell. Phys. Chem. Chem. Phys. 16(25), 12614–12624 (2014)
Wierzbicki, R., et al.: Design and fabrication of an electrostatically driven microgripper for blood vessel manipulation. Microelectron. Eng. 83(4–9), 1651–1654 (2006)
Brouwer, D., de Jong, B., Soemers, H.: Design and modeling of a six DOFs MEMS-based precision manipulator. Precis. Eng. 34(2), 307–319 (2010)
Verotti, M., Dochshanov, A., Belfiore, N.P.: Compliance synthesis of CSFH MEMS-based microgrippers. J. Mech. Des. 139(2), 10 (2017)
Bagolini, A., Ronchin, S., Bellutti, P., Chistè, M., Verotti, M., Belfiore, N.P.: Fabrication of novel MEMS microgrippers by deep reactive ion etching with metal hard mask. J. Microelectromech. Syst. 26(4), 926–934 (2017)
Veroli, A., Buzzin, A., Frezza, F., De Cesare, G., Giovine, E., Belfiore, N.P.: An approach to the extreme miniaturization of rotary comb drives. Actuators 7(4), 70 (2018)
Buzzin, A., Cupo, S., Giovine, E., de Cesare, G., Belfiore, N.P.: Compliant nano-pliers as a biomedical tool at the nanoscale: design, simulation and fabrication. Micromachines 11(12), 1087 (2020)
Buzzin, A., Veroli, A., de Cesare, G., Giovine, E., Verotti, M., Belfiore, N.P.: A new NEMS based linear-to-rotary displacement-capacity transducer. In: IEEE International Workshop on Advances in Sensors and Interfaces (IWASI), pp. 201–204. IEEE (2019)
Velosa-Moncada, L.A., Aguilera-Cortés, L.A., González-Palacios, M.A., Raskin, J.P., Herrera-May, A.L.: Design of a novel MEMS microgripper with rotatory electrostatic comb-drive actuators for biomedical applications. Sensors 18(5), 1664 (2018)
Verotti, M., Dochshanov, A., Belfiore, N.P.: A comprehensive survey on microgrippers design: mechanical structure. J. Mech. Des. 139(6), 060801 (2017)
Buzzin, A., Rossi, A., Giovine, E., de Cesare, G., Belfiore, N.P.: Downsizing effects on micro and nano comb drives. Actuators 11(3), 71 (2022)
Veroli, A., et al.: Development of a NEMS-technology based nano gripper. In: Ferraresi, C., Quaglia, G. (eds.) RAAD 2017. MMS, vol. 49, pp. 601–611. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-61276-8_63
Luisetto, I., et al.: An interdisciplinary approach to the nanomanipulation of SiO2 nanoparticles: design, fabrication and feasibility. Appl. Sci. 8(12), 2645 (2018)
Cecchi, R., et al.: Development of micro-grippers for tissue and cell manipulation with direct morphological comparison. Micromachines 6(11), 1710–1728 (2015)
Vurchio, F., et al.: Grasping and releasing agarose micro beads in water drops. Micromachines 10(7), 436 (2019)
Du, N., Chou, J., Kulla, E., Floriano, P.N., Christodoulides, N., McDevitt, J.T.: A disposable bio-nano-chip using agarose beads for high performance immunoassays. Biosens. Bioelectron. 28(1), 251–256 (2011)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Buzzin, A. et al. (2023). Compliant Multi-hinge Microgripper for Biomanipulation: Microbeads Grasping Feasibility Study. In: Di Francia, G., Di Natale, C. (eds) Sensors and Microsystems. AISEM 2022. Lecture Notes in Electrical Engineering, vol 999. Springer, Cham. https://doi.org/10.1007/978-3-031-25706-3_5
Download citation
DOI: https://doi.org/10.1007/978-3-031-25706-3_5
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-25705-6
Online ISBN: 978-3-031-25706-3
eBook Packages: EngineeringEngineering (R0)