[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Group Signatures with Designated Traceability over Openers’ Attributes in Bilinear Groups

  • Conference paper
  • First Online:
Information Security Applications (WISA 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13720))

Included in the following conference series:

Abstract

Anonymity and traceability are two properties that are seemingly difficult to be compatible. “Group signatures with designated traceability” that was introduced at CANDAR 2021 is a group signature scheme in which a signer is capable of designating openers by specifying an opening access structure. In this paper, we give an instantiation of the scheme in the algebraic setting of bilinear groups.

This work was supported by The Telecommunication Advancement Foundation (TAF), and JSPS KAKENHI Grant Number JP19K20272.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 51.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 64.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    This is because a user should sign his/her second public key generated by him/herself when it joins the group. On the other hand, its first public key should be maintained based on an authentic system such as a public-key infrastructure.

References

  1. Abe, M., Fuchsbauer, G., Groth, J., Haralambiev, K., Ohkubo, M.: Structure-preserving signatures and commitments to group elements. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 209–236. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14623-7_12

    Chapter  Google Scholar 

  2. Abe, M., Hofheinz, D., Nishimaki, R., Ohkubo, M., Pan, J.: Compact structure-preserving signatures with almost tight security. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol. 10402, pp. 548–580. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63715-0_19

    Chapter  Google Scholar 

  3. Anada, H., Arita, S., Sakurai, K.: Proof of knowledge on monotone predicates and its application to attribute-based identifications and signatures. IACR Cryptology ePrint Archive 2016, 483 (2016). http://eprint.iacr.org/2016/483

  4. Anada, H., Fukumitsu, M., Hasegawa, S.: Group signatures with designated traceability. In: Proceedings of the Ninth International Symposium on Computing and Networking, CANDAR 2021, Matsue, Japan, 23–26 November 2021 (2021)

    Google Scholar 

  5. Bellare, M., Shi, H., Zhang, C.: Foundations of group signatures: the case of dynamic groups. In: Menezes, A. (ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 136–153. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-30574-3_11

    Chapter  Google Scholar 

  6. Escala, A., Groth, J.: Fine-tuning Groth-Sahai proofs. In: Krawczyk, H. (ed.) PKC 2014. LNCS, vol. 8383, pp. 630–649. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54631-0_36

    Chapter  Google Scholar 

  7. Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 186–194. Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-47721-7_12

    Chapter  Google Scholar 

  8. Galbraith, S.D., Paterson, K.G., Smart, N.P.: Pairings for cryptographers. Discret. Appl. Math. 156(16), 3113–3121 (2008). https://doi.org/10.1016/j.dam.2007.12.010

    Article  MathSciNet  MATH  Google Scholar 

  9. Groth, J., Sahai, A.: Efficient non-interactive proof systems for bilinear groups. In: Smart, N. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 415–432. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78967-3_24. http://dl.acm.org/citation.cfm?id=1788414.1788438

  10. Herranz, J.: Attribute-based versions of Schnorr and ElGamal. Appl. Algebra Eng. Commun. Comput. 27(1), 17–57 (2015). https://doi.org/10.1007/s00200-015-0270-7

    Article  MathSciNet  MATH  Google Scholar 

  11. Kohlweiss, M., Miers, I.: Accountable metadata-hiding escrow: a group signature case study. Proc. Priv. Enhancing Technol. 2015(2), 206–221 (2015). https://doi.org/10.1515/popets-2015-0012

    Article  Google Scholar 

  12. Libert, B., Nguyen, K., Peters, T., Yung, M.: Bifurcated signatures: folding the accountability vs. anonymity dilemma into a single private signing scheme. In: Canteaut, A., Standaert, F.-X. (eds.) EUROCRYPT 2021. LNCS, vol. 12698, pp. 521–552. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-77883-5_18

    Chapter  Google Scholar 

  13. Libert, B., Yung, M.: Non-interactive CCA-secure threshold cryptosystems with adaptive security: new framework and constructions. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 75–93. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28914-9_5

    Chapter  Google Scholar 

  14. Sakai, Y., Emura, K., Hanaoka, G., Kawai, Y., Matsuda, T., Omote, K.: Group signatures with message-dependent opening. In: Abdalla, M., Lange, T. (eds.) Pairing 2012. LNCS, vol. 7708, pp. 270–294. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36334-4_18

    Chapter  Google Scholar 

  15. Xu, S., Yung, M.: Accountable ring signatures: a smart card approach. In: Quisquater, J.-J., Paradinas, P., Deswarte, Y., El Kalam, A.A. (eds.) CARDIS 2004. IIFIP, vol. 153, pp. 271–286. Springer, Boston, MA (2004). https://doi.org/10.1007/1-4020-8147-2_18

    Chapter  Google Scholar 

Download references

Acknowledgements

The authors would like to express sincere thanks to the anonymous reviewers for their technical comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroaki Anada .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Anada, H., Fukumitsu, M., Hasegawa, S. (2023). Group Signatures with Designated Traceability over Openers’ Attributes in Bilinear Groups. In: You, I., Youn, TY. (eds) Information Security Applications. WISA 2022. Lecture Notes in Computer Science, vol 13720. Springer, Cham. https://doi.org/10.1007/978-3-031-25659-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-25659-2_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-25658-5

  • Online ISBN: 978-3-031-25659-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics