[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

A Joint Framework to Privacy-Preserving Edge Intelligence in Vehicular Networks

  • Conference paper
  • First Online:
Information Security Applications (WISA 2022)

Abstract

The number of internet-connected devices has been exponentially growing with the massive volume of heterogeneous data generated from various devices, resulting in a highly intertwined cyber-physical system. Currently, the Edge Intelligence System (EIS) concept that leverages the merits of edge computing and Artificial Intelligence (AI) is utilized to provide smart cloud services with powerful computational processing and reduce decision-making delays. Thus, EIS offers a possible solution to realizing future Intelligent Transportation Systems (ITS), especially in a vehicular network framework. However, since the central aggregator server is responsible for supervising the entire system orchestration, the existing EIS framework faces several challenges and is still potentially susceptible to numerous malicious attacks. Hence, to solve the issues mentioned earlier, this paper presents the notion of secure edge intelligence, merging the benefits of Federated Learning (FL), blockchain, and Local Differential Privacy (LDP). The blockchain-assisted FL approach is used to efficiently improve traffic prediction accuracy and enhance user privacy and security by recording transactions in immutable distributed ledger networks as well as providing a decentralized reward mechanism system. Furthermore, LDP is empowered to strengthen the confidentiality of data sharing transactions, especially in protecting the user’s private data from various attacks. The proposed framework has been implemented in two scenarios, i.e., blockchain-based FL to efficiently develop the decentralized traffic management for vehicular networks and LDP-based FL to produce the randomized privacy protection using the IBM Library for differential privacy.

This research was supported by the Republic of Korea’s MSIT (Ministry of Science and ICT), under the ICT Convergence Industry Innovation Technology Development Project (2022-0-00614) supervised by the IITP and partially supported by the Republic of Korea’s MSIT (Ministry of Science and ICT), under the 2022 technology commercialization capability enhancement project (2022-BS-RD-0034) supervised by the INNOPOLIS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 51.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 64.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Anh, T.T., Luong, N.C., Niyato, D., Kim, D.I., Wang, L.C.: Efficient training management for mobile crowd-machine learning: a deep reinforcement learning approach. IEEE Wirel. Commun. Lett. 8(5), 1345–1348 (2019)

    Article  Google Scholar 

  2. Boyes, H., Hallaq, B., Cunningham, J., Watson, T.: The industrial internet of things (iiot): an analysis framework. Comput. Ind. 101, 1–12 (2018)

    Article  Google Scholar 

  3. Cai, H., Rueckert, D., Passerat-Palmbach, J.: 2cp: decentralized protocols to transparently evaluate contributivity in blockchain federated learning environments. arXiv preprint arXiv:2011.07516 (2020)

  4. Chen, M., Yang, Z., Saad, W., Yin, C., Poor, H.V., Cui, S.: A joint learning and communications framework for federated learning over wireless networks. IEEE Trans. Wirel. Commun. 20(1), 269–283 (2020)

    Article  Google Scholar 

  5. Yueyue Dai, D.X., Maharjan, S., Qiao, G., Zhang, Y.: Artificial intelligence empowered edge computing and caching for internet of vehicles. IEEE Wirel. Commun. 26(3), 12–18 (2019)

    Article  Google Scholar 

  6. Dwork, C.: Differential privacy: a survey of results. In: Agrawal, M., Du, D., Duan, Z., Li, A. (eds.) TAMC 2008. LNCS, vol. 4978, pp. 1–19. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-79228-4_1

    Chapter  MATH  Google Scholar 

  7. Dwork, C., Roth, A., et al.: The algorithmic foundations of differential privacy. Found. Trends Theor. Comput. Sci. 9(3–4), 211–407 (2014)

    MathSciNet  MATH  Google Scholar 

  8. Firdaus, M., Rhee, K.-H.: On blockchain-enhanced secure data storage and sharing in vehicular edge computing networks. Appl. Sci. 11(1), 414 (2021)

    Article  Google Scholar 

  9. Hard, A., et al.: Federated learning for mobile keyboard prediction. arXiv preprint arXiv:1811.03604 (2018)

  10. Holohan, N., Braghin, S., Aonghusa, P.M., Levacher, K.: Diffprivlib: the ibm differential privacy library. arXiv preprint arXiv:1907.02444 (2019)

  11. Kang, J., Xiong, Z., Niyato, D., Zou, Y., Zhang, Y., Guizani, M.: Reliable federated learning for mobile networks. IEEE Wirel. Commun. 27(2), 72–80 (2020)

    Article  Google Scholar 

  12. Kenney, J.B.: Dedicated short-range communications (dsrc) standards in the united states. Proc. IEEE 99(7), 1162–1182 (2011)

    Article  Google Scholar 

  13. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)

    Article  Google Scholar 

  14. Le, L., Ye, H., Li, G.Y.: Toward intelligent vehicular networks: a machine learning framework. IEEE Internet Things J. 6(1), 124–135 (2018)

    Google Scholar 

  15. Yi, L., Peng, J., Kang, J., Iliyasu, A.M., Niyato, D., El-Latif, A.A.A.: A secure federated learning framework for 5g networks. IEEE Wirel. Commun. 27(4), 24–31 (2020)

    Article  Google Scholar 

  16. Yunlong, L., Huang, X., Dai, Y., Maharjan, S., Zhang, Y.: Blockchain and federated learning for privacy-preserved data sharing in industrial iot. IEEE Trans. Ind. Inf. 16(6), 4177–4186 (2019)

    Google Scholar 

  17. Yunlong, L., Huang, X., Dai, Y., Maharjan, S., Zhang, Y.: Federated learning for data privacy preservation in vehicular cyber-physical systems. IEEE Netw. 34(3), 50–56 (2020)

    Article  Google Scholar 

  18. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system. In: Decentralized Business Review, p. 21260 (2008)

    Google Scholar 

  19. Shokri, R., Shmatikov, V.: Privacy-preserving deep learning. In: Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communications Security, pp. 1310–1321 (2015)

    Google Scholar 

  20. Shokri, R., Stronati, M., Song, C., Shmatikov, V.: Membership inference attacks against machine learning models. In: 2017 IEEE Symposium on Security and Privacy (SP), pp. 3–18. IEEE (2017)

    Google Scholar 

  21. Szydlo, M.: Merkle tree traversal in log space and time. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 541–554. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24676-3_32

    Chapter  MATH  Google Scholar 

  22. Tian, S., Yang, W., Grange, J.M.L., Wang, P., Huang, W., Ye, Z.: Smart healthcare: making medical care more intelligent. Glob. Health J. 3(3), 62–65 (2019)

    Article  Google Scholar 

  23. Tran, N.H., Bao, W., Zomaya, A., Nguyen, M.N.H., Hong, C.S.: Federated learning over wireless networks: optimization model design and analysis. In: IEEE INFOCOM 2019-IEEE Conference on Computer Communications, pp. 1387–1395. IEEE (2019)

    Google Scholar 

  24. Truex, S., et al.: A hybrid approach to privacy-preserving federated learning. In: Proceedings of the 12th ACM Workshop on Artificial Intelligence and Security, pp. 1–11 (2019)

    Google Scholar 

  25. Al-Turjman, F., Abujubbeh, M.: Iot-enabled smart grid via sm: an overview. Future Gener. Comput. Syst. 96, 579–590 (2019)

    Article  Google Scholar 

  26. Wei, K., et al.: Federated learning with differential privacy: algorithms and performance analysis. IEEE Trans. Inf. Forensics Secur. 15, 3454–3469 (2020)

    Article  Google Scholar 

  27. Weng, J., Weng, J., Zhang, J., Li, M., Zhang, Y., Luo, W.: Deepchain: auditable and privacy-preserving deep learning with blockchain-based incentive. IEEE Trans. Depend. Secure Comput. 18(5), 2438–2455 (2019)

    Google Scholar 

  28. Zhi Zhou, X., Chen, E.L., Zeng, L., Luo, K., Zhang, J.: Edge intelligence: paving the last mile of artificial intelligence with edge computing. Proc. IEEE 107(8), 1738–1762 (2019)

    Article  Google Scholar 

  29. Li, Z., Yu, F.R., Wang, Y., Ning, B., Tang, T.: Big data analytics in intelligent transportation systems: a survey. IEEE Trans. Intell. Transp. Syst. 20(1), 383–398 (2018)

    Google Scholar 

  30. Zhu, X., Li, H., Yu, Y.: Blockchain-based privacy preserving deep learning. In: Guo, F., Huang, X., Yung, M. (eds.) Inscrypt 2018. LNCS, vol. 11449, pp. 370–383. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-14234-6_20

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyung-Hyune Rhee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Firdaus, M., Rhee, KH. (2023). A Joint Framework to Privacy-Preserving Edge Intelligence in Vehicular Networks. In: You, I., Youn, TY. (eds) Information Security Applications. WISA 2022. Lecture Notes in Computer Science, vol 13720. Springer, Cham. https://doi.org/10.1007/978-3-031-25659-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-25659-2_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-25658-5

  • Online ISBN: 978-3-031-25659-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics