[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

PREFHE, PREFHE-AES and PREFHE-SGX: Secure Multiparty Computation Protocols from Fully Homomorphic Encryption and Proxy ReEncryption with AES and Intel SGX

  • Conference paper
  • First Online:
Security and Privacy in Communication Networks (SecureComm 2022)

Abstract

We build our secure multiparty computation (MPC) protocols on top of the fully homomorphic encryption (FHE) scheme, BFVrns, and augment it with Proxy Re-Encryption (PRE). We offer three distinct secure MPC protocols that make use of the Advanced Encryption Standard (AES) and Intel Software Guardian Extension (SGX). The PREFHE protocol is based on FHE and PRE that offers a reasonable computational time of milliseconds or seconds, depending on the function computed jointly on the parties’ encrypted data. It offers 4 rounds and a communication cost that only depends on the parties’ ciphertext size. PREFHE-AES employs AES-128 encryption, which reduces the cost of communication to bits rather than kilobytes or megabytes while maintaining the same number of rounds as PREFHE. PREFHE-SGX is another novel approach that reduces the number of rounds from 4 to 3 by utilizing only one untrusted server. Additionally, it delivers a reasonable level of performance that is applicable to real-world use cases. We pioneer the use of SGX and FHE in secure MPC protocols, resulting in reduced number of rounds. In the protocols, after parties send their encrypted data to the server, they are not required to be online that improves practicality in the protocols. Additionally, the parties are not required to collaborate on any computations during the encryption and decryption phases that makes our protocols more efficient than other proposed protocols.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 87.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 109.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://gitlab.com/palisade/palisade-release.

  2. 2.

    https://github.com/gramineproject/gramine.

References

  1. Albrecht, M., et al.: Homomorphic encryption security standard. Technical report, HomomorphicEncryption.org, Toronto, Canada, November 2018

    Google Scholar 

  2. Albrecht, M.R., Player, R., Scott, S.: On the concrete hardness of learning with errors. J. Math. Cryptol. 9(3), 169–203 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  3. Asharov, G., Jain, A., López-Alt, A., Tromer, E., Vaikuntanathan, V., Wichs, D.: Multiparty computation with low communication, computation and interaction via threshold FHE. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 483–501. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-4_29

    Chapter  Google Scholar 

  4. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-cryptographic fault-tolerant distributed computation. In: Providing Sound Foundations for Cryptography: On the Work of Shafi Goldwasser and Silvio Micali, pp. 351–371 (2019)

    Google Scholar 

  5. Bendlin, R., Damgård, I., Orlandi, C., Zakarias, S.: Semi-homomorphic encryption and multiparty computation. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 169–188. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20465-4_11

    Chapter  Google Scholar 

  6. Bogetoft, P., et al.: Secure multiparty computation goes live. In: Dingledine, R., Golle, P. (eds.) FC 2009. LNCS, vol. 5628, pp. 325–343. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03549-4_20

    Chapter  Google Scholar 

  7. Brakerski, Z.: Fully homomorphic encryption without modulus switching from classical GapSVP. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 868–886. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32009-5_50

    Chapter  Google Scholar 

  8. Brakerski, Z., Vaikuntanathan, V.: Efficient fully homomorphic encryption from (standard) LWE. Cryptology ePrint Archive, Report 2011/344 (2011). https://eprint.iacr.org/2011/344

  9. Catrina, O., Kerschbaum, F.: Fostering the uptake of secure multiparty computation in e-commerce. In: 2008 Third International Conference on Availability, Reliability and Security, pp. 693–700. IEEE (2008)

    Google Scholar 

  10. Chaum, D., Crépeau, C., Damgard, I.: Multiparty unconditionally secure protocols. In: Proceedings of the Twentieth Annual ACM Symposium on Theory of Computing, pp. 11–19 (1988)

    Google Scholar 

  11. Choi, S.G., Elbaz, A., Juels, A., Malkin, T., Yung, M.: Two-party computing with encrypted data. In: Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp. 298–314. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-76900-2_18

    Chapter  Google Scholar 

  12. Choudhury, A., Loftus, J., Orsini, E., Patra, A., Smart, N.P.: Between a rock and a hard place: interpolating between MPC and FHE. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013. LNCS, vol. 8270, pp. 221–240. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-42045-0_12

    Chapter  Google Scholar 

  13. Costan, V., Devadas, S.: Intel SGX explained. Cryptology ePrint Archive (2016)

    Google Scholar 

  14. Cramer, R., Damgård, I., Nielsen, J.B.: Multiparty computation from threshold homomorphic encryption. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 280–300. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44987-6_18

    Chapter  Google Scholar 

  15. Damgård, I., Ishai, Y.: Constant-round multiparty computation using a black-box pseudorandom generator. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 378–394. Springer, Heidelberg (2005). https://doi.org/10.1007/11535218_23

    Chapter  Google Scholar 

  16. Damgård, I., Keller, M., Larraia, E., Pastro, V., Scholl, P., Smart, N.P.: Practical covertly secure MPC for dishonest majority – or: breaking the SPDZ limits. In: Crampton, J., Jajodia, S., Mayes, K. (eds.) ESORICS 2013. LNCS, vol. 8134, pp. 1–18. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40203-6_1

    Chapter  Google Scholar 

  17. Damgård, I., Orlandi, C.: Multiparty computation for dishonest majority: from passive to active security at low cost. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 558–576. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14623-7_30

    Chapter  Google Scholar 

  18. Damgård, I., Pastro, V., Smart, N., Zakarias, S.: Multiparty computation from somewhat homomorphic encryption. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 643–662. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32009-5_38

    Chapter  Google Scholar 

  19. van Dijk, M., Gentry, C., Halevi, S., Vaikuntanathan, V.: Fully homomorphic encryption over the integers. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 24–43. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5_2

    Chapter  Google Scholar 

  20. Erkin, Z., Franz, M., Guajardo, J., Katzenbeisser, S., Lagendijk, I., Toft, T.: Privacy-preserving face recognition. In: Goldberg, I., Atallah, M.J. (eds.) PETS 2009. LNCS, vol. 5672, pp. 235–253. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03168-7_14

    Chapter  Google Scholar 

  21. Erkin, Z., Veugen, T., Toft, T., Lagendijk, R.L.: Generating private recommendations efficiently using homomorphic encryption and data packing. IEEE Trans. Inf. Forensics Secur. 7(3), 1053–1066 (2012)

    Article  Google Scholar 

  22. Fan, J., Vercauteren, F.: Somewhat practical fully homomorphic encryption. Cryptology ePrint Archive, Report 2012/144 (2012). https://eprint.iacr.org/2012/144

  23. Garg, S., Gentry, C., Halevi, S., Raykova, M.: Two-round secure MPC from indistinguishability obfuscation (2014)

    Google Scholar 

  24. Gentry, C., Halevi, S., Smart, N.P.: Fully homomorphic encryption with polylog overhead. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 465–482. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-4_28

    Chapter  Google Scholar 

  25. Gentry, C., et al.: Fully homomorphic encryption using ideal lattices. In: Stoc, pp. 169–178 (2009)

    Google Scholar 

  26. Gjerdrum, A.T., Pettersen, R., Johansen, H.D., Johansen, D.: Performance of trusted computing in cloud infrastructures with intel SGX. In: CLOSER, pp. 668–675 (2017)

    Google Scholar 

  27. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game, or a completeness theorem for protocols with honest majority. In: Providing Sound Foundations for Cryptography: On the Work of Shafi Goldwasser and Silvio Micali, pp. 307–328 (2019)

    Google Scholar 

  28. Halevi, S., Lindell, Y., Pinkas, B.: Secure computation on the web: computing without simultaneous interaction. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 132–150. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22792-9_8

    Chapter  Google Scholar 

  29. Halevi, S., Polyakov, Y., Shoup, V.: An improved RNS variant of the BFV homomorphic encryption scheme. In: Matsui, M. (ed.) CT-RSA 2019. LNCS, vol. 11405, pp. 83–105. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-12612-4_5

    Chapter  Google Scholar 

  30. Kamara, S., Mohassel, P., Raykova, M.: Outsourcing multi-party computation. Cryptology ePrint Archive (2011)

    Google Scholar 

  31. Kuvaiskii, D., Kumar, G., Vij, M.: Computation offloading to hardware accelerators in intel SGX and Gramine library OS. arXiv preprint arXiv:2203.01813 (2022)

  32. Lindell, Y., Pinkas, B.: A proof of security of Yao’s protocol for two-party computation. J. Cryptol. 22(2), 161–188 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  33. López-Alt, A., Tromer, E., Vaikuntanathan, V.: Cloud-assisted multiparty computation from fully homomorphic encryption. Cryptology ePrint Archive (2011)

    Google Scholar 

  34. López-Alt, A., Tromer, E., Vaikuntanathan, V.: On-the-fly multiparty computation on the cloud via multikey fully homomorphic encryption. In: Proceedings of the Forty-Fourth Annual ACM Symposium on Theory of Computing, pp. 1219–1234 (2012)

    Google Scholar 

  35. Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors over rings. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 1–23. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5_1

    Chapter  Google Scholar 

  36. Naehrig, M., Lauter, K., Vaikuntanathan, V.: Can homomorphic encryption be practical? In: Proceedings of the 3rd ACM Workshop on Cloud Computing Security Workshop, pp. 113–124 (2011)

    Google Scholar 

  37. Natarajan, D., Dai, W., Dreslinski, R.: CHEX-MIX: combining homomorphic encryption with trusted execution environments for two-party oblivious inference in the cloud. Cryptology ePrint Archive, Paper 2021/1603 (2021). https://eprint.iacr.org/2021/1603

  38. Peter, A., Tews, E., Katzenbeisser, S.: Efficiently outsourcing multiparty computation under multiple keys. IEEE Trans. Inf. Forensics Secur. 8(12), 2046–2058 (2013)

    Article  Google Scholar 

  39. Polyakov, Y., Rohloff, K., Ryan, G.W.: Palisade lattice cryptography library (2018). https://palisade-crypto.org/

  40. Polyakov, Y., Rohloff, K., Sahu, G., Vaikuntanathan, V.: Fast proxy re-encryption for publish/subscribe systems. ACM Trans. Privacy Secur. (TOPS) 20(4), 1–31 (2017)

    Article  Google Scholar 

  41. Rivest, R.L., Adleman, L., Dertouzos, M.L., et al.: On data banks and privacy homomorphisms. Found. Secure Comput. 4(11), 169–180 (1978)

    MathSciNet  Google Scholar 

  42. Smart, N.P., Vercauteren, F.: Fully homomorphic SIMD operations. Des. Codes Crypt. 71(1), 57–81 (2014)

    Article  MATH  Google Scholar 

  43. Stehlé, D., Steinfeld, R.: Faster fully homomorphic encryption. In: Proceedings of ASIACRYPT 2010, pp. 377–394 (2010)

    Google Scholar 

  44. Stehlé, D., Steinfeld, R., Tanaka, K., Xagawa, K.: Efficient public key encryption based on ideal lattices. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 617–635. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-10366-7_36

    Chapter  Google Scholar 

  45. Takeshita, J., McKechney, C., Pajak, J., Papadimitriou, A., Karl, R., Jung, T.: GPS: integration of graphene, palisade, and SGX for large-scale aggregations of distributed data. Cryptology ePrint Archive (2021)

    Google Scholar 

  46. Wu, P., Ning, J., Shen, J., Wang, H., Chang, E.C.: Hybrid trust multi-party computation with trusted execution environment. In: The Network and Distributed System Security (NDSS) Symposium 2022 (2022)

    Google Scholar 

  47. Yakupoglu, C., Kurt, R.: Parameter selection for computationally efficient use of the BFVRNS FHE scheme. Under review (2022)

    Google Scholar 

  48. Yao, A.C.C.: How to generate and exchange secrets. In: 27th Annual Symposium on Foundations of Computer Science (SFCS 1986), pp. 162–167. IEEE (1986)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cavidan Yakupoglu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yakupoglu, C., Rohloff, K. (2023). PREFHE, PREFHE-AES and PREFHE-SGX: Secure Multiparty Computation Protocols from Fully Homomorphic Encryption and Proxy ReEncryption with AES and Intel SGX. In: Li, F., Liang, K., Lin, Z., Katsikas, S.K. (eds) Security and Privacy in Communication Networks. SecureComm 2022. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 462. Springer, Cham. https://doi.org/10.1007/978-3-031-25538-0_43

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-25538-0_43

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-25537-3

  • Online ISBN: 978-3-031-25538-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics